亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A generic parallel framework for inferring large-scale gene regulatory networks from expression profiles: application to Alzheimer’s disease network

推论 计算机科学 基因调控网络 加速 分拆(数论) 构造(python库) 计算生物学 表达式(计算机科学) 基因 秩(图论) 人工智能 数据挖掘 分布式计算 生物 基因表达 遗传学 计算机网络 并行计算 数学 组合数学 程序设计语言
作者
Softya Sebastian,Swarup Roy,Jugal Kalita
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1)
标识
DOI:10.1093/bib/bbac482
摘要

The inference of large-scale gene regulatory networks is essential for understanding comprehensive interactions among genes. Most existing methods are limited to reconstructing networks with a few hundred nodes. Therefore, parallel computing paradigms must be leveraged to construct large networks. We propose a generic parallel framework that enables any existing method, without re-engineering, to infer large networks in parallel, guaranteeing quality output. The framework is tested on 15 inference methods (not limited to) employing in silico benchmarks and real-world large expression matrices, followed by qualitative and speedup assessment. The framework does not compromise the quality of the base serial inference method. We rank the candidate methods and use the top-performing method to infer an Alzheimer's Disease (AD) affected network from large expression profiles of a triple transgenic mouse model consisting of 45,101 genes. The resultant network is further explored to obtain hub genes that emerge functionally related to the disease. We partition the network into 41 modules and conduct pathway enrichment analysis, revealing that a good number of participating genes are collectively responsible for several brain disorders, including AD. Finally, we extract the interactions of a few known AD genes and observe that they are periphery genes connected to the network's hub genes. Availability: The R implementation of the framework is downloadable from https://github.com/Netralab/GenericParallelFramework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
香蕉觅云应助科研通管家采纳,获得10
40秒前
40秒前
1分钟前
1分钟前
1分钟前
1分钟前
TYGao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
littleboykk发布了新的文献求助30
1分钟前
2分钟前
馆长举报VDC求助涉嫌违规
2分钟前
馆长举报heyudian求助涉嫌违规
3分钟前
3分钟前
3分钟前
3分钟前
herococa发布了新的文献求助20
3分钟前
3分钟前
3分钟前
3分钟前
繁荣的青旋完成签到,获得积分10
3分钟前
4分钟前
4分钟前
超级飞侠发布了新的文献求助10
4分钟前
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
April_5发布了新的文献求助10
5分钟前
5分钟前
充电宝应助April_5采纳,获得10
5分钟前
小哈完成签到 ,获得积分10
5分钟前
科目三应助超级飞侠采纳,获得10
5分钟前
馆长举报zhizhi2021求助涉嫌违规
5分钟前
Otter完成签到,获得积分0
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568645
求助须知:如何正确求助?哪些是违规求助? 3991187
关于积分的说明 12355456
捐赠科研通 3663199
什么是DOI,文献DOI怎么找? 2018739
邀请新用户注册赠送积分活动 1053170
科研通“疑难数据库(出版商)”最低求助积分说明 940756