Pneumothorax segmentation of chest X-rays using improved UNet++

气胸 分割 计算机科学 交叉熵 人工智能 图像分割 编码器 模式识别(心理学) 医学 放射科 操作系统
作者
Xing Zhang,Zhiqin Liu,Qingfeng Wang,Bo Chen
标识
DOI:10.1109/mlise57402.2022.00013
摘要

Pneumothorax is a life-threatening medical emergency that results in a state of pneumoperitoneum in the chest due to the entry of gas into the pleural cavity. Pneumothorax usually overlaps with tissues such as ribs and clavicles, which are usually difficult to identify on chest X-rays and have a large clinical underdiagnosis. In recent years, breakthroughs have been achieved in many medical image segmentation tasks using deep learning methods. However, the blurred boundary and tissue overlap in chest X-ray pneumothorax segmentation make it difficult for many algorithms to achieve better results in pneumothorax segmentation. To address these problems, we propose a deep learning network ResNeSt-UNet++ based on UNet++ and ResNeSt. In detail, ResNeSt-UNet++ designs a context-aware feature encoder with residual blocks to extract multi-scale features and introduces hybrid jump paths to obtain and fuse image features at different scales. Moreover, the ResNeSt- UNet++ network uses spatial and channel squeezes and excitation (scSE) modules as decoders to refine. Further, ResNeSt-UNet++ defines a loss function based on Binary Cross Entropy to train the network. The Dice similarity coefficient values and IOUs obtained using this method on the X-ray pneumothorax dataset are 88.31% and 83.1%, respectively, which achieve better performance in pneumothorax segmentation compared with networks such as traditional FPN and UNet++. The experimental results show that this method can segment X-ray pneumothorax with high accuracy and help doctors to provide a reference for accurate judgment of X-ray pneumothorax.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zp发布了新的文献求助10
刚刚
1秒前
1秒前
朴素豪完成签到,获得积分10
1秒前
丘比特应助言小采纳,获得10
2秒前
Wencher发布了新的文献求助10
3秒前
4秒前
lucky发布了新的文献求助10
4秒前
科研通AI6应助整齐的鹭洋采纳,获得10
6秒前
6秒前
6秒前
雅思莫拉完成签到,获得积分10
6秒前
7秒前
老阎应助苏芋采纳,获得30
7秒前
大气伯云发布了新的文献求助10
8秒前
10秒前
无限的书芹完成签到 ,获得积分10
11秒前
刘院发布了新的文献求助10
12秒前
香蕉面包完成签到 ,获得积分10
12秒前
12秒前
可爱的函函应助清新的S采纳,获得10
12秒前
科研通AI6应助白白采纳,获得10
15秒前
池台下完成签到 ,获得积分10
16秒前
MollyD发布了新的文献求助10
17秒前
Owen应助从容开山采纳,获得10
18秒前
Owen应助小曾采纳,获得10
20秒前
lili完成签到 ,获得积分10
20秒前
20秒前
21秒前
充电宝应助Leffzeng采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
浮游应助可靠月亮采纳,获得10
23秒前
24秒前
MollyD完成签到,获得积分10
24秒前
www发布了新的文献求助10
25秒前
Wuyyy完成签到,获得积分10
26秒前
AAAA发布了新的文献求助10
26秒前
的服务费完成签到,获得积分10
27秒前
打哈哈儿完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428829
求助须知:如何正确求助?哪些是违规求助? 4542429
关于积分的说明 14180552
捐赠科研通 4460086
什么是DOI,文献DOI怎么找? 2445612
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414012