Pneumothorax segmentation of chest X-rays using improved UNet++

气胸 分割 计算机科学 交叉熵 人工智能 图像分割 编码器 模式识别(心理学) 医学 放射科 操作系统
作者
Xing Zhang,Zhiqin Liu,Qingfeng Wang,Bo Chen
标识
DOI:10.1109/mlise57402.2022.00013
摘要

Pneumothorax is a life-threatening medical emergency that results in a state of pneumoperitoneum in the chest due to the entry of gas into the pleural cavity. Pneumothorax usually overlaps with tissues such as ribs and clavicles, which are usually difficult to identify on chest X-rays and have a large clinical underdiagnosis. In recent years, breakthroughs have been achieved in many medical image segmentation tasks using deep learning methods. However, the blurred boundary and tissue overlap in chest X-ray pneumothorax segmentation make it difficult for many algorithms to achieve better results in pneumothorax segmentation. To address these problems, we propose a deep learning network ResNeSt-UNet++ based on UNet++ and ResNeSt. In detail, ResNeSt-UNet++ designs a context-aware feature encoder with residual blocks to extract multi-scale features and introduces hybrid jump paths to obtain and fuse image features at different scales. Moreover, the ResNeSt- UNet++ network uses spatial and channel squeezes and excitation (scSE) modules as decoders to refine. Further, ResNeSt-UNet++ defines a loss function based on Binary Cross Entropy to train the network. The Dice similarity coefficient values and IOUs obtained using this method on the X-ray pneumothorax dataset are 88.31% and 83.1%, respectively, which achieve better performance in pneumothorax segmentation compared with networks such as traditional FPN and UNet++. The experimental results show that this method can segment X-ray pneumothorax with high accuracy and help doctors to provide a reference for accurate judgment of X-ray pneumothorax.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocolu应助皮卡球Oo采纳,获得10
1秒前
深情安青应助暴躁平底锅采纳,获得10
1秒前
哈喽发布了新的文献求助10
2秒前
2秒前
4秒前
李健应助杨震采纳,获得30
4秒前
wu61发布了新的文献求助30
4秒前
4秒前
6秒前
6秒前
7秒前
8秒前
自然怀寒发布了新的文献求助10
8秒前
DBY发布了新的文献求助10
9秒前
隐形曼青应助小小仙桃子采纳,获得10
9秒前
隐形曼青应助Emma采纳,获得10
9秒前
GUGE发布了新的文献求助10
11秒前
华仔应助妩媚的强炫采纳,获得30
11秒前
12秒前
李昕昊发布了新的文献求助10
13秒前
SciGPT应助研友_Lpaepn采纳,获得30
13秒前
19发布了新的文献求助30
13秒前
沉默的半鬼完成签到 ,获得积分10
14秒前
D.Z完成签到,获得积分20
15秒前
安若发布了新的文献求助30
15秒前
小王八完成签到 ,获得积分10
15秒前
共享精神应助沉静的飞雪采纳,获得10
16秒前
ljq完成签到,获得积分10
16秒前
哈喽完成签到,获得积分10
18秒前
19秒前
zzzzoe发布了新的文献求助10
19秒前
李昕昊完成签到,获得积分10
19秒前
19秒前
ok发布了新的文献求助10
20秒前
Q22完成签到,获得积分20
20秒前
21秒前
风趣过客完成签到,获得积分10
22秒前
碧蓝世立完成签到,获得积分10
22秒前
22秒前
aileen9190完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945