Dynamic room temperature setpoints of air-conditioning demand response based on heat balance equations with thermal comfort model as constraint: On-site experiment and simulation

设定值 热舒适性 暖通空调 空调 热质量 需求响应 模拟 环境科学 计算机科学 控制理论(社会学) 汽车工程 热的 工程类 气象学 控制(管理) 机械工程 物理 人工智能 电气工程
作者
Zeyang Li,Qinglong Meng,Ying’an Wei,Liang Zhang,Zhe Sun,Yu Lei,Li Yang,Xiuying Yan
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105798-105798 被引量:12
标识
DOI:10.1016/j.jobe.2022.105798
摘要

Demand response (DR) can alleviate the peak load of the grid and enhance its stability. The centralized controllability of heating, ventilation, and air-conditioning (HVAC) systems along with the inertia of the building makes it a potential efficient participant in DR events. In this regard, changing room temperature setpoints is considered a traditional DR strategy. Many studies have investigated the improvement of the indoor temperature settings during DR events, concentrating on the control and management aspects. However, less attention has been paid to the effect of temperature change on the indoor thermal balance factor and thermal comfort levels. In this work, a method based on heat balance equations combined with a thermal comfort model as a constraint is proposed for dynamically adjusting room temperature setpoint to tap the energy-saving potential of air-conditioning systems. According to the outdoor hourly temperature predicted by a radial basis function (RBF) neural network algorithm, combined with time-of-use (TOU) electricity price information, different thermal comfort models are established in DR and non-DR periods. Using this information, the optimal indoor hourly temperature setpoint is calculated using heat balance equations and a thermal comfort indicator. Physical experiments and EnergyPlus simulations are carried out to investigate and evaluate the proposed strategies. The results show that the dynamic temperature setpoint can save 2.8% on electricity consumption and 3.73% on operational costs compared to the fixed temperature setpoint scenario under the premise of ensuring thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yty发布了新的文献求助10
刚刚
烟花应助卡夫卡没在海边采纳,获得10
1秒前
456发布了新的文献求助10
2秒前
传奇3应助温暖以蓝采纳,获得10
2秒前
辛勤的仰完成签到,获得积分10
2秒前
如意新晴完成签到,获得积分10
2秒前
2秒前
zrk完成签到,获得积分20
3秒前
3秒前
szmsnail发布了新的文献求助20
3秒前
Ava应助Monik采纳,获得10
3秒前
打打应助zhui采纳,获得10
4秒前
4秒前
中华有为发布了新的文献求助10
5秒前
yana完成签到,获得积分10
5秒前
科目三应助卡卡采纳,获得10
5秒前
6秒前
XHZGG完成签到 ,获得积分10
7秒前
aiming完成签到,获得积分10
8秒前
shengChen发布了新的文献求助10
8秒前
热心的皮完成签到 ,获得积分10
8秒前
hhhhhhan616完成签到,获得积分10
8秒前
尉迟明风完成签到 ,获得积分10
8秒前
珲雯完成签到,获得积分10
8秒前
xinxin发布了新的文献求助10
9秒前
朱孝培完成签到,获得积分10
9秒前
247793325发布了新的文献求助20
9秒前
加油呀完成签到,获得积分10
9秒前
聪明可爱小绘理完成签到,获得积分10
9秒前
36456657应助啱啱采纳,获得10
9秒前
桐桐应助韦威风采纳,获得10
10秒前
10秒前
10秒前
zc98完成签到,获得积分10
11秒前
ygr应助Hao采纳,获得10
11秒前
NEMO发布了新的文献求助10
12秒前
李爱国应助神勇的戒指采纳,获得10
12秒前
13秒前
思源应助kekao采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794