Dynamic room temperature setpoints of air-conditioning demand response based on heat balance equations with thermal comfort model as constraint: On-site experiment and simulation

设定值 热舒适性 暖通空调 空调 热质量 需求响应 模拟 环境科学 计算机科学 控制理论(社会学) 汽车工程 热的 工程类 气象学 控制(管理) 机械工程 物理 人工智能 电气工程
作者
Zeyang Li,Qinglong Meng,Ying’an Wei,Liang Zhang,Zhe Sun,Yu Lei,Li Yang,Xiuying Yan
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105798-105798 被引量:12
标识
DOI:10.1016/j.jobe.2022.105798
摘要

Demand response (DR) can alleviate the peak load of the grid and enhance its stability. The centralized controllability of heating, ventilation, and air-conditioning (HVAC) systems along with the inertia of the building makes it a potential efficient participant in DR events. In this regard, changing room temperature setpoints is considered a traditional DR strategy. Many studies have investigated the improvement of the indoor temperature settings during DR events, concentrating on the control and management aspects. However, less attention has been paid to the effect of temperature change on the indoor thermal balance factor and thermal comfort levels. In this work, a method based on heat balance equations combined with a thermal comfort model as a constraint is proposed for dynamically adjusting room temperature setpoint to tap the energy-saving potential of air-conditioning systems. According to the outdoor hourly temperature predicted by a radial basis function (RBF) neural network algorithm, combined with time-of-use (TOU) electricity price information, different thermal comfort models are established in DR and non-DR periods. Using this information, the optimal indoor hourly temperature setpoint is calculated using heat balance equations and a thermal comfort indicator. Physical experiments and EnergyPlus simulations are carried out to investigate and evaluate the proposed strategies. The results show that the dynamic temperature setpoint can save 2.8% on electricity consumption and 3.73% on operational costs compared to the fixed temperature setpoint scenario under the premise of ensuring thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
蚂蚁牙黑发布了新的文献求助10
3秒前
3秒前
von17完成签到,获得积分10
3秒前
茕凡桃七完成签到,获得积分10
3秒前
RAmos_1982完成签到,获得积分10
4秒前
4秒前
von17发布了新的文献求助10
6秒前
科研通AI5应助wyk采纳,获得10
6秒前
Tsui发布了新的文献求助10
7秒前
Qing完成签到,获得积分10
9秒前
骄傲慕尼黑完成签到,获得积分10
9秒前
ycjfs1995发布了新的文献求助10
9秒前
askldj完成签到 ,获得积分10
10秒前
13秒前
布吉岛呀完成签到 ,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
王磊发布了新的文献求助10
19秒前
熠熠关注了科研通微信公众号
20秒前
21秒前
蚂蚁牙黑完成签到,获得积分10
22秒前
刚国忠发布了新的文献求助10
25秒前
26秒前
27秒前
Mark完成签到 ,获得积分10
30秒前
31秒前
NexusExplorer应助May采纳,获得10
31秒前
Casson发布了新的文献求助10
33秒前
xvzhenyuan发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090