Dynamic room temperature setpoints of air-conditioning demand response based on heat balance equations with thermal comfort model as constraint: On-site experiment and simulation

设定值 热舒适性 暖通空调 空调 热质量 需求响应 模拟 环境科学 计算机科学 控制理论(社会学) 汽车工程 热的 工程类 气象学 控制(管理) 机械工程 物理 人工智能 电气工程
作者
Zeyang Li,Qinglong Meng,Ying’an Wei,Liang Zhang,Zhe Sun,Yu Lei,Li Yang,Xiuying Yan
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105798-105798 被引量:12
标识
DOI:10.1016/j.jobe.2022.105798
摘要

Demand response (DR) can alleviate the peak load of the grid and enhance its stability. The centralized controllability of heating, ventilation, and air-conditioning (HVAC) systems along with the inertia of the building makes it a potential efficient participant in DR events. In this regard, changing room temperature setpoints is considered a traditional DR strategy. Many studies have investigated the improvement of the indoor temperature settings during DR events, concentrating on the control and management aspects. However, less attention has been paid to the effect of temperature change on the indoor thermal balance factor and thermal comfort levels. In this work, a method based on heat balance equations combined with a thermal comfort model as a constraint is proposed for dynamically adjusting room temperature setpoint to tap the energy-saving potential of air-conditioning systems. According to the outdoor hourly temperature predicted by a radial basis function (RBF) neural network algorithm, combined with time-of-use (TOU) electricity price information, different thermal comfort models are established in DR and non-DR periods. Using this information, the optimal indoor hourly temperature setpoint is calculated using heat balance equations and a thermal comfort indicator. Physical experiments and EnergyPlus simulations are carried out to investigate and evaluate the proposed strategies. The results show that the dynamic temperature setpoint can save 2.8% on electricity consumption and 3.73% on operational costs compared to the fixed temperature setpoint scenario under the premise of ensuring thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助longyu915采纳,获得30
2秒前
4秒前
5秒前
5秒前
dhy发布了新的文献求助10
6秒前
纯真如丁给纯真如丁的求助进行了留言
7秒前
Charlie完成签到,获得积分10
7秒前
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得20
11秒前
curtisness应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
wking应助科研通管家采纳,获得10
11秒前
浅尝离白应助科研通管家采纳,获得10
11秒前
哈哈哈哈发布了新的文献求助10
15秒前
GGbong发布了新的文献求助10
15秒前
所所应助chenchen采纳,获得10
16秒前
隐形背包完成签到,获得积分10
17秒前
19秒前
Nicole完成签到,获得积分10
20秒前
21秒前
小姜发布了新的文献求助10
21秒前
Jasper应助小田采纳,获得10
22秒前
昏睡的沛柔完成签到 ,获得积分10
22秒前
顾矜应助哈哈哈哈采纳,获得10
23秒前
25秒前
不配.应助阿兰采纳,获得30
25秒前
菠萝包完成签到 ,获得积分10
27秒前
万康发布了新的文献求助10
30秒前
zhangxy完成签到,获得积分10
33秒前
33秒前
Jasper应助DawnySun采纳,获得10
35秒前
Hart发布了新的文献求助10
39秒前
41秒前
科研陈发布了新的文献求助10
42秒前
CT完成签到,获得积分10
42秒前
乐乐应助泡泡采纳,获得10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870