Dynamic room temperature setpoints of air-conditioning demand response based on heat balance equations with thermal comfort model as constraint: On-site experiment and simulation

设定值 热舒适性 暖通空调 空调 热质量 需求响应 模拟 环境科学 计算机科学 控制理论(社会学) 汽车工程 热的 工程类 气象学 控制(管理) 机械工程 物理 电气工程 人工智能
作者
Zeyang Li,Qinglong Meng,Ying’an Wei,Liang Zhang,Zhe Sun,Yu Lei,Li Yang,Xiuying Yan
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105798-105798 被引量:12
标识
DOI:10.1016/j.jobe.2022.105798
摘要

Demand response (DR) can alleviate the peak load of the grid and enhance its stability. The centralized controllability of heating, ventilation, and air-conditioning (HVAC) systems along with the inertia of the building makes it a potential efficient participant in DR events. In this regard, changing room temperature setpoints is considered a traditional DR strategy. Many studies have investigated the improvement of the indoor temperature settings during DR events, concentrating on the control and management aspects. However, less attention has been paid to the effect of temperature change on the indoor thermal balance factor and thermal comfort levels. In this work, a method based on heat balance equations combined with a thermal comfort model as a constraint is proposed for dynamically adjusting room temperature setpoint to tap the energy-saving potential of air-conditioning systems. According to the outdoor hourly temperature predicted by a radial basis function (RBF) neural network algorithm, combined with time-of-use (TOU) electricity price information, different thermal comfort models are established in DR and non-DR periods. Using this information, the optimal indoor hourly temperature setpoint is calculated using heat balance equations and a thermal comfort indicator. Physical experiments and EnergyPlus simulations are carried out to investigate and evaluate the proposed strategies. The results show that the dynamic temperature setpoint can save 2.8% on electricity consumption and 3.73% on operational costs compared to the fixed temperature setpoint scenario under the premise of ensuring thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
简单的大哥完成签到,获得积分10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得30
刚刚
华仔应助科研通管家采纳,获得10
刚刚
段盼兰应助科研通管家采纳,获得20
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
阿呸完成签到,获得积分10
1秒前
star完成签到,获得积分10
1秒前
shangyu66完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
sapphizure完成签到,获得积分10
1秒前
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Young应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
陈陈完成签到,获得积分10
2秒前
晓晓发布了新的文献求助10
2秒前
hhp发布了新的文献求助10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
科研通AI5应助Hu采纳,获得10
3秒前
3秒前
英俊的铭应助漫迷漫采纳,获得10
3秒前
永恒完成签到,获得积分10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5110719
求助须知:如何正确求助?哪些是违规求助? 4319127
关于积分的说明 13456792
捐赠科研通 4149478
什么是DOI,文献DOI怎么找? 2273581
邀请新用户注册赠送积分活动 1275681
关于科研通互助平台的介绍 1213945