Dynamic room temperature setpoints of air-conditioning demand response based on heat balance equations with thermal comfort model as constraint: On-site experiment and simulation

设定值 热舒适性 暖通空调 空调 热质量 需求响应 模拟 环境科学 计算机科学 控制理论(社会学) 汽车工程 热的 工程类 气象学 控制(管理) 机械工程 物理 电气工程 人工智能
作者
Zeyang Li,Qinglong Meng,Ying’an Wei,Liang Zhang,Zhe Sun,Yu Lei,Li Yang,Xiuying Yan
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105798-105798 被引量:12
标识
DOI:10.1016/j.jobe.2022.105798
摘要

Demand response (DR) can alleviate the peak load of the grid and enhance its stability. The centralized controllability of heating, ventilation, and air-conditioning (HVAC) systems along with the inertia of the building makes it a potential efficient participant in DR events. In this regard, changing room temperature setpoints is considered a traditional DR strategy. Many studies have investigated the improvement of the indoor temperature settings during DR events, concentrating on the control and management aspects. However, less attention has been paid to the effect of temperature change on the indoor thermal balance factor and thermal comfort levels. In this work, a method based on heat balance equations combined with a thermal comfort model as a constraint is proposed for dynamically adjusting room temperature setpoint to tap the energy-saving potential of air-conditioning systems. According to the outdoor hourly temperature predicted by a radial basis function (RBF) neural network algorithm, combined with time-of-use (TOU) electricity price information, different thermal comfort models are established in DR and non-DR periods. Using this information, the optimal indoor hourly temperature setpoint is calculated using heat balance equations and a thermal comfort indicator. Physical experiments and EnergyPlus simulations are carried out to investigate and evaluate the proposed strategies. The results show that the dynamic temperature setpoint can save 2.8% on electricity consumption and 3.73% on operational costs compared to the fixed temperature setpoint scenario under the premise of ensuring thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kongzhounandu应助韶华采纳,获得10
刚刚
句号发布了新的文献求助10
刚刚
愿好完成签到,获得积分10
1秒前
1秒前
1秒前
weining发布了新的文献求助10
1秒前
cbbb完成签到,获得积分10
2秒前
orixero应助CuvJ采纳,获得10
2秒前
tuzhihong完成签到,获得积分10
2秒前
几星霜完成签到,获得积分10
2秒前
3秒前
雨琴完成签到,获得积分10
3秒前
青禾完成签到,获得积分10
3秒前
Naomi0331应助鲜于灵竹采纳,获得10
4秒前
葡萄气泡水完成签到,获得积分10
4秒前
4秒前
秋半梦完成签到,获得积分10
4秒前
GGbond完成签到,获得积分10
5秒前
科研通AI5应助自由秋荷采纳,获得10
5秒前
赘婿应助儒雅的忆翠采纳,获得10
6秒前
Shinchan完成签到,获得积分10
6秒前
wanci应助万浩采纳,获得10
6秒前
NIUBEN发布了新的文献求助10
6秒前
nuonuo发布了新的文献求助10
7秒前
风中忆枫发布了新的文献求助10
7秒前
8秒前
Bepa发布了新的文献求助10
8秒前
是个聪明蛋完成签到,获得积分10
8秒前
情怀应助加纳加纳乔采纳,获得10
8秒前
郑光英发布了新的文献求助10
8秒前
leaf完成签到 ,获得积分10
8秒前
可爱的函函应助LDDD采纳,获得10
9秒前
老迟到的醉卉完成签到,获得积分10
9秒前
leaolf应助小丸子采纳,获得10
9秒前
愉快的夏青完成签到,获得积分10
10秒前
碳水大王完成签到,获得积分10
10秒前
温水完成签到,获得积分10
10秒前
三伏天发布了新的文献求助10
11秒前
Dr Niu应助顺利梦菡采纳,获得10
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355