High-Throughput Screening of Metal–Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation

丙烷 石油化工 金属有机骨架 分离(统计) 吞吐量 材料科学 吸附 色谱分离 计算机科学 工艺工程 人工智能 机器学习 化学 工程类 色谱法 有机化学 无线 电信 高效液相色谱法
作者
Xiaoyu Xue,Min Cheng,Shihui Wang,Shaochen Chen,Li Zhou,Chong Liu,Xu Ji
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (2): 1073-1084 被引量:14
标识
DOI:10.1021/acs.iecr.2c02374
摘要

The separation of a propane (C3H8)/propylene(C3H6) mixture is of paramount importance in the petrochemical industry. Metal–organic frameworks (MOFs), as a class of promising alternative to the traditional adsorbents, have garnered extensive interest. This study proposes a machine learning-assisted high-throughput screening strategy for the identification of suitable MOFs for C3H8/C3H6 separation, striving to accelerate the discovery of high-performance MOF candidates for this particular application. First, a chemical/geometric analysis-based prescreening is applied to a data set of 146 203 MOFs composed of an experimentally synthesized MOF database and a hypothetical MOF database, and MOFs with undesirable chemical/geometric features were excluded. Six structural and nine chemical descriptors were calculated for the remaining MOFs. Random Forest regression algorithm was applied to "learn" the relationship correlations between the features (chemical and/or structural) of MOFs and their C3H8/C3H6 separation capacity. Grand Canonical Monte Carlo (GCMC) simulations were applied to evaluate the C3H8/C3H6 separation performances of the randomly selected training and testing MOF samples. A performance prediction model based on chemical and structural descriptors was obtained with R2 equal to 0.96, which was employed for a separation performance prediction of the remaining MOFs. 2500 MOFs with potential to possess high C3H8/C3H6 separation performance were shortlisted by the prediction model. GCMC simulations were applied to calibrate the prediction results and validate of the machine learning model. MOFs with competitively high C3H8/C3H6 separation potential and regenerability were identified, and a comparison with MOFs reported in the literature was made, indicating that the proposed machine learning-assisted high-throughput screening approach is efficient and effective. Furthermore, structure–property correlation analysis was conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助10
刚刚
dis发布了新的文献求助10
刚刚
Boxcc完成签到 ,获得积分10
刚刚
1秒前
2秒前
丘比特应助小苏采纳,获得10
2秒前
鸡脖侠完成签到,获得积分10
2秒前
3秒前
感动城发布了新的文献求助10
3秒前
自信大雁发布了新的文献求助10
3秒前
诺z完成签到,获得积分10
3秒前
善学以致用应助leslie采纳,获得10
3秒前
千里独行侠完成签到,获得积分10
4秒前
东临发布了新的文献求助10
4秒前
搜集达人应助一吃一大碗采纳,获得30
5秒前
三新荞发布了新的文献求助10
5秒前
1134完成签到,获得积分10
5秒前
6秒前
墨橙完成签到,获得积分10
6秒前
Jasper应助一鸣大人采纳,获得10
7秒前
柯一一应助一口蛋黄苏采纳,获得10
7秒前
8秒前
9秒前
含蓄绿兰发布了新的文献求助10
9秒前
1no完成签到 ,获得积分10
9秒前
浩然完成签到,获得积分10
10秒前
我是老大应助mm采纳,获得10
11秒前
搜集达人应助egg采纳,获得30
11秒前
Nariy完成签到,获得积分10
11秒前
充电宝应助emm采纳,获得10
12秒前
任性铅笔完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
半柚应助sdl采纳,获得10
13秒前
13秒前
六便士发布了新的文献求助10
14秒前
流云完成签到,获得积分10
14秒前
汉堡包应助ff采纳,获得10
15秒前
smottom应助机械师简采纳,获得20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188