High-Throughput Screening of Metal–Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation

丙烷 石油化工 金属有机骨架 分离(统计) 吞吐量 材料科学 人工神经网络 吸附 计算机科学 工艺工程 人工智能 机器学习 化学 工程类 有机化学 无线 电信
作者
Xiaoyu Xue,Min Cheng,Sheng Wang,Shaochen Chen,Li Zhou,Chong Liu,Xu Ji
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (2): 1073-1084 被引量:10
标识
DOI:10.1021/acs.iecr.2c02374
摘要

The separation of a propane (C3H8)/propylene(C3H6) mixture is of paramount importance in the petrochemical industry. Metal–organic frameworks (MOFs), as a class of promising alternative to the traditional adsorbents, have garnered extensive interest. This study proposes a machine learning-assisted high-throughput screening strategy for the identification of suitable MOFs for C3H8/C3H6 separation, striving to accelerate the discovery of high-performance MOF candidates for this particular application. First, a chemical/geometric analysis-based prescreening is applied to a data set of 146 203 MOFs composed of an experimentally synthesized MOF database and a hypothetical MOF database, and MOFs with undesirable chemical/geometric features were excluded. Six structural and nine chemical descriptors were calculated for the remaining MOFs. Random Forest regression algorithm was applied to "learn" the relationship correlations between the features (chemical and/or structural) of MOFs and their C3H8/C3H6 separation capacity. Grand Canonical Monte Carlo (GCMC) simulations were applied to evaluate the C3H8/C3H6 separation performances of the randomly selected training and testing MOF samples. A performance prediction model based on chemical and structural descriptors was obtained with R2 equal to 0.96, which was employed for a separation performance prediction of the remaining MOFs. 2500 MOFs with potential to possess high C3H8/C3H6 separation performance were shortlisted by the prediction model. GCMC simulations were applied to calibrate the prediction results and validate of the machine learning model. MOFs with competitively high C3H8/C3H6 separation potential and regenerability were identified, and a comparison with MOFs reported in the literature was made, indicating that the proposed machine learning-assisted high-throughput screening approach is efficient and effective. Furthermore, structure–property correlation analysis was conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyanling完成签到 ,获得积分10
5秒前
dengx1完成签到,获得积分10
5秒前
Jovid完成签到,获得积分10
5秒前
ark861023发布了新的文献求助10
7秒前
Rinsana完成签到,获得积分10
8秒前
8秒前
9秒前
田田完成签到,获得积分10
11秒前
11秒前
hugo发布了新的文献求助10
13秒前
努力看文献的大头完成签到,获得积分10
14秒前
14秒前
cm发布了新的文献求助10
14秒前
jdjakdjaslk完成签到,获得积分10
15秒前
默默的巧荷完成签到,获得积分10
16秒前
16秒前
聪明牛排发布了新的文献求助10
16秒前
17秒前
英姑应助ark861023采纳,获得10
17秒前
ding应助烂漫的白梦采纳,获得10
17秒前
18秒前
19秒前
21秒前
苹果向露发布了新的文献求助10
21秒前
巡音幻夜完成签到,获得积分10
21秒前
sam发布了新的文献求助10
23秒前
24秒前
冷静博超给pufanlg的求助进行了留言
25秒前
虚心咖啡发布了新的文献求助10
26秒前
华仔应助FG采纳,获得10
26秒前
Wilddeer完成签到 ,获得积分10
26秒前
xx完成签到 ,获得积分10
27秒前
liu bo完成签到,获得积分10
28秒前
28秒前
hugo发布了新的文献求助10
29秒前
31秒前
sam关注了科研通微信公众号
34秒前
momomomo123完成签到,获得积分10
34秒前
诸葛半雪发布了新的文献求助10
34秒前
纪星星完成签到 ,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012