High-Throughput Screening of Metal–Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation

丙烷 石油化工 金属有机骨架 分离(统计) 吞吐量 材料科学 吸附 色谱分离 计算机科学 工艺工程 人工智能 机器学习 化学 工程类 色谱法 有机化学 无线 电信 高效液相色谱法
作者
Xiaoyu Xue,Min Cheng,Shihui Wang,Shaochen Chen,Li Zhou,Chong Liu,Xu Ji
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (2): 1073-1084 被引量:14
标识
DOI:10.1021/acs.iecr.2c02374
摘要

The separation of a propane (C3H8)/propylene(C3H6) mixture is of paramount importance in the petrochemical industry. Metal–organic frameworks (MOFs), as a class of promising alternative to the traditional adsorbents, have garnered extensive interest. This study proposes a machine learning-assisted high-throughput screening strategy for the identification of suitable MOFs for C3H8/C3H6 separation, striving to accelerate the discovery of high-performance MOF candidates for this particular application. First, a chemical/geometric analysis-based prescreening is applied to a data set of 146 203 MOFs composed of an experimentally synthesized MOF database and a hypothetical MOF database, and MOFs with undesirable chemical/geometric features were excluded. Six structural and nine chemical descriptors were calculated for the remaining MOFs. Random Forest regression algorithm was applied to "learn" the relationship correlations between the features (chemical and/or structural) of MOFs and their C3H8/C3H6 separation capacity. Grand Canonical Monte Carlo (GCMC) simulations were applied to evaluate the C3H8/C3H6 separation performances of the randomly selected training and testing MOF samples. A performance prediction model based on chemical and structural descriptors was obtained with R2 equal to 0.96, which was employed for a separation performance prediction of the remaining MOFs. 2500 MOFs with potential to possess high C3H8/C3H6 separation performance were shortlisted by the prediction model. GCMC simulations were applied to calibrate the prediction results and validate of the machine learning model. MOFs with competitively high C3H8/C3H6 separation potential and regenerability were identified, and a comparison with MOFs reported in the literature was made, indicating that the proposed machine learning-assisted high-throughput screening approach is efficient and effective. Furthermore, structure–property correlation analysis was conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhiqian2024完成签到,获得积分10
1秒前
Arrhenius完成签到,获得积分10
2秒前
悠悠完成签到 ,获得积分10
3秒前
人不犯二枉少年完成签到,获得积分10
4秒前
4秒前
研友_Lw7MKL完成签到,获得积分10
4秒前
Alan完成签到,获得积分10
5秒前
葳葳发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
在险峰发布了新的文献求助10
8秒前
正直的沛凝完成签到,获得积分10
8秒前
9秒前
10秒前
海鸥完成签到,获得积分10
10秒前
蒋若风完成签到,获得积分10
10秒前
爆米花应助孙文杰采纳,获得10
11秒前
小艾完成签到,获得积分10
11秒前
明理萃完成签到 ,获得积分10
12秒前
苏黎世发布了新的文献求助10
12秒前
13秒前
乔安发布了新的文献求助10
13秒前
炫哥IRIS发布了新的文献求助10
13秒前
LaTeXer给积极行天的求助进行了留言
14秒前
ww发布了新的文献求助10
14秒前
Carlo完成签到,获得积分10
15秒前
蓝胖子完成签到 ,获得积分10
16秒前
17秒前
终生科研徒刑完成签到 ,获得积分10
17秒前
18秒前
ysc发布了新的文献求助20
20秒前
21秒前
LKX完成签到 ,获得积分10
21秒前
纯真的诗兰完成签到,获得积分10
22秒前
自然函完成签到 ,获得积分10
22秒前
等一个晴天完成签到,获得积分10
23秒前
as发布了新的文献求助100
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048