High-Throughput Screening of Metal–Organic Frameworks Assisted by Machine Learning: Propane/Propylene Separation

丙烷 石油化工 金属有机骨架 分离(统计) 吞吐量 材料科学 吸附 色谱分离 计算机科学 工艺工程 人工智能 机器学习 化学 工程类 色谱法 有机化学 无线 电信 高效液相色谱法
作者
Xiaoyu Xue,Min Cheng,Shihui Wang,Shaochen Chen,Li Zhou,Chong Liu,Xu Ji
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (2): 1073-1084 被引量:14
标识
DOI:10.1021/acs.iecr.2c02374
摘要

The separation of a propane (C3H8)/propylene(C3H6) mixture is of paramount importance in the petrochemical industry. Metal–organic frameworks (MOFs), as a class of promising alternative to the traditional adsorbents, have garnered extensive interest. This study proposes a machine learning-assisted high-throughput screening strategy for the identification of suitable MOFs for C3H8/C3H6 separation, striving to accelerate the discovery of high-performance MOF candidates for this particular application. First, a chemical/geometric analysis-based prescreening is applied to a data set of 146 203 MOFs composed of an experimentally synthesized MOF database and a hypothetical MOF database, and MOFs with undesirable chemical/geometric features were excluded. Six structural and nine chemical descriptors were calculated for the remaining MOFs. Random Forest regression algorithm was applied to "learn" the relationship correlations between the features (chemical and/or structural) of MOFs and their C3H8/C3H6 separation capacity. Grand Canonical Monte Carlo (GCMC) simulations were applied to evaluate the C3H8/C3H6 separation performances of the randomly selected training and testing MOF samples. A performance prediction model based on chemical and structural descriptors was obtained with R2 equal to 0.96, which was employed for a separation performance prediction of the remaining MOFs. 2500 MOFs with potential to possess high C3H8/C3H6 separation performance were shortlisted by the prediction model. GCMC simulations were applied to calibrate the prediction results and validate of the machine learning model. MOFs with competitively high C3H8/C3H6 separation potential and regenerability were identified, and a comparison with MOFs reported in the literature was made, indicating that the proposed machine learning-assisted high-throughput screening approach is efficient and effective. Furthermore, structure–property correlation analysis was conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Iceberg完成签到 ,获得积分10
1秒前
隐形曼青应助Julien采纳,获得10
2秒前
3秒前
5秒前
5秒前
明亮夏旋完成签到,获得积分10
8秒前
9秒前
榴莲发布了新的文献求助10
10秒前
11秒前
14秒前
桐桐应助Dora采纳,获得10
14秒前
香蕉觅云应助糟糕的铁锤采纳,获得10
14秒前
16秒前
19秒前
19秒前
22秒前
沉静白卉完成签到,获得积分10
23秒前
guo发布了新的文献求助200
23秒前
隐形曼青应助渡川采纳,获得10
23秒前
大海完成签到,获得积分10
23秒前
25秒前
yuyuyu完成签到,获得积分10
26秒前
赘婿应助morena采纳,获得30
26秒前
masheng发布了新的文献求助10
26秒前
落后凝莲完成签到,获得积分20
27秒前
28秒前
隐形曼青应助动听的世立采纳,获得10
29秒前
29秒前
29秒前
西瓜妈妈完成签到,获得积分20
31秒前
时雨完成签到,获得积分10
31秒前
33秒前
33秒前
Ava应助hanchangcun采纳,获得10
34秒前
ElbingX发布了新的文献求助20
34秒前
lemongulf完成签到 ,获得积分10
35秒前
35秒前
机灵的成协完成签到,获得积分10
36秒前
Coral.发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976235
求助须知:如何正确求助?哪些是违规求助? 3520399
关于积分的说明 11203166
捐赠科研通 3256989
什么是DOI,文献DOI怎么找? 1798580
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516