Improved mine microseismic event recognition method combining neural network and transfer learning

微震 学习迁移 计算机科学 人工智能 深度学习 人工神经网络 特征(语言学) 数据集 机器学习 模式识别(心理学) 集合(抽象数据类型) 样品(材料) 数据挖掘 地质学 地震学 哲学 色谱法 化学 程序设计语言 语言学
作者
Linlin Ding,Lujie Cao,Gang Zhang,Pan Yi-shan
标识
DOI:10.1109/besc57393.2022.9995230
摘要

The data collected by the coal mine monitoring system contains a lot of noise, which is difficult to accurately identify with traditional methods. It can be processed by deep learning methods to mine the deep-level features of the data, making the identification more efficient. Both natural earthquakes and coal mine microseisms belong to the category of vibration. The waveform characteristics, focal mechanism, and monitoring targets are similar. Transfer learning can transfer the characteristics of large sample seismic data set to the model of small sample microseismic data set. Therefore, this paper proposes an improved mine microseismic event recognition method based on transfer learning. First, in view of the low accuracy of microseismic event recognition in the existing deep learning CNN method, a non-recursive SimRank-based model (SimRank CNN) is proposed. Secondly, in view of the problem that the small-sample microseismic data set is not enough to support the training of the neural network model and the recognition accuracy is not high, a source domain feature transfer learning method based on SimCNN is proposed. In order to make the model have a better ability to extract features. Furthermore, a LSTM-based time-series feature transfer learning method is proposed and the Transfer learning SimCNN transfer model (T-SimCNN) is constructed. Finally, the performance of the T-SimCNN transfer learning model has been improved, and the recognition accuracy of microseismic events can reach 95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助AN采纳,获得10
刚刚
清秀迎松应助谷谷采纳,获得10
刚刚
cchen完成签到 ,获得积分10
刚刚
无私秋珊应助西门百招采纳,获得10
1秒前
沧海一兰完成签到,获得积分10
2秒前
浮游应助橘子采纳,获得10
2秒前
猫猫爱吃煎饼完成签到 ,获得积分10
2秒前
Orange应助咕噜咕噜采纳,获得10
3秒前
5秒前
rk发布了新的文献求助12
5秒前
6秒前
杨金城完成签到,获得积分10
6秒前
田园完成签到,获得积分10
6秒前
小蘑菇应助无限小松鼠采纳,获得10
6秒前
科研通AI6应助万慧采纳,获得100
7秒前
8秒前
狗尾巴草发布了新的文献求助10
9秒前
金毛上将完成签到,获得积分10
9秒前
10秒前
谷谷完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
充电宝应助Leah采纳,获得10
11秒前
爱吃姜的面条完成签到,获得积分10
12秒前
domingo发布了新的文献求助30
12秒前
沉默的靖儿完成签到 ,获得积分10
13秒前
wanci应助快乐小狗采纳,获得10
14秒前
卡卡光波完成签到,获得积分10
14秒前
虚心的老头完成签到,获得积分10
14秒前
Ava应助Orange采纳,获得10
14秒前
玄音完成签到,获得积分10
15秒前
zzw完成签到,获得积分10
16秒前
16秒前
18秒前
19秒前
19秒前
19秒前
19秒前
Akim应助bhappy21采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503