A generalization performance study on the boosting radiotherapy dose calculation engine based on super-resolution

计算机科学 核医学 剂量体积直方图 放射治疗 放射治疗计划 医学 放射科
作者
Yewei Wang,Yaoying Liu,Yanlin Bai,Qichao Zhou,Shouping Xu,Xueying Pang
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
标识
DOI:10.1016/j.zemedi.2022.10.006
摘要

During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice.A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated.The prediction errors of MDSR were 0.06-0.84% of Dmean indices, and the gamma passing rate was 83.1-91.0% on the benchmark testing dataset, and 0.02-1.03% and 71.3-90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (p < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03-0.004%) with dose and increased (by 0.01-0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values.The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
剋剋发布了新的文献求助10
1秒前
1秒前
友好的向日葵完成签到,获得积分10
1秒前
柏康娜完成签到,获得积分10
2秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
xuxingjie完成签到,获得积分10
3秒前
搜集达人应助ahead采纳,获得10
3秒前
多巴胺发布了新的文献求助10
3秒前
所所应助整齐的豆芽采纳,获得10
3秒前
3秒前
4秒前
Avery发布了新的文献求助10
4秒前
zyz完成签到,获得积分10
5秒前
5秒前
5秒前
寻找组织应助fun采纳,获得40
6秒前
passerby发布了新的文献求助10
6秒前
6秒前
OB发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分10
7秒前
Ava应助A_Brute采纳,获得10
7秒前
啊亮完成签到,获得积分10
7秒前
ranranran发布了新的文献求助10
7秒前
KOAS完成签到,获得积分10
7秒前
烂漫的碧萱完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
浮游应助TrDoubleE采纳,获得10
9秒前
10秒前
CodeCraft应助玄天明月采纳,获得10
10秒前
Jasper应助地球采纳,获得10
10秒前
穆思柔完成签到,获得积分10
10秒前
思源应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656