A generalization performance study on the boosting radiotherapy dose calculation engine based on super-resolution

计算机科学 核医学 剂量体积直方图 放射治疗 放射治疗计划 医学 放射科
作者
Yewei Wang,Yaoying Liu,Yanlin Bai,Qichao Zhou,Shouping Xu,Xueying Pang
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
标识
DOI:10.1016/j.zemedi.2022.10.006
摘要

During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice.A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated.The prediction errors of MDSR were 0.06-0.84% of Dmean indices, and the gamma passing rate was 83.1-91.0% on the benchmark testing dataset, and 0.02-1.03% and 71.3-90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (p < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03-0.004%) with dose and increased (by 0.01-0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values.The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肉松小贝完成签到,获得积分10
刚刚
1秒前
1秒前
HEIKU应助yangyangyang采纳,获得10
1秒前
Esfuerzo完成签到,获得积分10
1秒前
科研通AI5应助安静的安寒采纳,获得10
2秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
2秒前
royan2完成签到,获得积分10
2秒前
阿勒泰完成签到,获得积分10
2秒前
小于爱科研完成签到,获得积分10
2秒前
2秒前
zkc完成签到,获得积分10
2秒前
2秒前
luo发布了新的文献求助30
2秒前
雾蓝发布了新的文献求助10
2秒前
3秒前
zhang发布了新的文献求助10
3秒前
佳佳发布了新的文献求助10
4秒前
royan2发布了新的文献求助10
4秒前
4秒前
zkc发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
沐沐君完成签到,获得积分10
5秒前
nancyzhy完成签到,获得积分10
5秒前
当时明月在完成签到,获得积分0
5秒前
共享精神应助无情念之采纳,获得10
6秒前
zhenzhen发布了新的文献求助10
6秒前
韭黄发布了新的文献求助10
6秒前
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
maox1aoxin应助科研通管家采纳,获得30
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759