亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A generalization performance study on the boosting radiotherapy dose calculation engine based on super-resolution

计算机科学 核医学 剂量体积直方图 放射治疗 放射治疗计划 医学 放射科
作者
Yewei Wang,Yaoying Liu,Yanlin Bai,Qichao Zhou,Shouping Xu,Xueying Pang
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
标识
DOI:10.1016/j.zemedi.2022.10.006
摘要

During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice.A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated.The prediction errors of MDSR were 0.06-0.84% of Dmean indices, and the gamma passing rate was 83.1-91.0% on the benchmark testing dataset, and 0.02-1.03% and 71.3-90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (p < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03-0.004%) with dose and increased (by 0.01-0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values.The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xona完成签到,获得积分10
3秒前
田様应助CSS采纳,获得10
11秒前
学术小白完成签到,获得积分10
12秒前
15秒前
19秒前
高强发布了新的文献求助10
19秒前
25秒前
酷波er应助glq采纳,获得10
27秒前
冒险寻羊应助白华苍松采纳,获得10
30秒前
草木完成签到,获得积分10
31秒前
KongHN完成签到,获得积分10
36秒前
含蓄戾完成签到 ,获得积分10
39秒前
科研冰山完成签到 ,获得积分10
49秒前
wf完成签到,获得积分10
51秒前
53秒前
glq发布了新的文献求助10
1分钟前
1分钟前
单薄的大白菜真实的钥匙完成签到,获得积分20
1分钟前
orixero应助缥缈的砖头采纳,获得10
1分钟前
1分钟前
Langsam发布了新的文献求助10
1分钟前
1分钟前
1分钟前
在水一方应助这个不好吃采纳,获得10
1分钟前
科目三应助自由青柏采纳,获得10
1分钟前
王QQ完成签到 ,获得积分10
1分钟前
三更笔舞完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
金钰贝儿应助科研通管家采纳,获得10
1分钟前
领会完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
上海丁辉人应助glq采纳,获得10
1分钟前
自由青柏发布了新的文献求助10
1分钟前
1分钟前
spark810完成签到,获得积分0
1分钟前
可靠的书桃完成签到 ,获得积分10
1分钟前
紫陌完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801847
关于积分的说明 7845829
捐赠科研通 2459207
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727