亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼完成签到 ,获得积分10
2秒前
qiii发布了新的文献求助10
9秒前
JamesPei应助魏欣娜采纳,获得10
28秒前
研友_VZG7GZ应助orangel采纳,获得10
34秒前
36秒前
金沐栋发布了新的文献求助10
39秒前
57秒前
Rachel发布了新的文献求助10
1分钟前
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
orixero应助契合采纳,获得20
1分钟前
1分钟前
Lucas应助潇洒荧荧采纳,获得10
1分钟前
契合发布了新的文献求助20
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助魏欣娜采纳,获得10
1分钟前
1分钟前
2分钟前
隐形曼青应助踏实白柏采纳,获得10
2分钟前
研友_VZG7GZ应助契合采纳,获得20
2分钟前
大个应助淡然的念珍采纳,获得10
2分钟前
夹心就是嘉欣呀完成签到,获得积分10
2分钟前
2分钟前
今后应助夹心就是嘉欣呀采纳,获得10
2分钟前
华西招生版完成签到,获得积分10
2分钟前
契合发布了新的文献求助20
2分钟前
慕青应助Huzhu采纳,获得10
2分钟前
3分钟前
风华正茂完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
群山完成签到 ,获得积分10
3分钟前
3分钟前
魏欣娜发布了新的文献求助10
3分钟前
科目三应助badabadaba采纳,获得30
3分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177