CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [BioMed Central]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助Infinit采纳,获得10
3秒前
Teko发布了新的文献求助10
5秒前
Akim应助油个大饼呜呜呜采纳,获得10
5秒前
chris完成签到,获得积分10
5秒前
FXQ123_范发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
8秒前
8秒前
机灵飞阳发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
斯文败类应助Teko采纳,获得10
12秒前
脑洞疼应助小左采纳,获得10
14秒前
16秒前
嗯嗯发布了新的文献求助10
17秒前
17秒前
浮生发布了新的文献求助10
17秒前
18秒前
Teko完成签到,获得积分10
21秒前
英俊的铭应助程之杭采纳,获得10
21秒前
24秒前
喻义梅发布了新的文献求助10
24秒前
jk发布了新的文献求助10
25秒前
可爱的安萱完成签到,获得积分10
27秒前
orixero应助尼莫采纳,获得10
28秒前
29秒前
泡面完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
JUdy发布了新的文献求助20
31秒前
SYLH应助蓝天白云采纳,获得30
32秒前
受伤邴完成签到 ,获得积分10
33秒前
ZZZ发布了新的文献求助10
33秒前
华仔发布了新的文献求助20
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136