已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心土豆完成签到,获得积分10
刚刚
Aloha完成签到,获得积分10
2秒前
zjh完成签到,获得积分10
6秒前
Mere完成签到,获得积分10
7秒前
科研通AI2S应助young采纳,获得10
8秒前
善学以致用应助zengyiyong采纳,获得10
8秒前
蔓越莓蛋糕完成签到 ,获得积分10
9秒前
9秒前
烟花应助gingercat采纳,获得10
10秒前
iorpi完成签到,获得积分10
10秒前
小刘哥儿完成签到,获得积分10
14秒前
养乐多敬你完成签到 ,获得积分10
16秒前
tejing1158完成签到 ,获得积分10
17秒前
19秒前
jimmyhui完成签到,获得积分10
19秒前
远山笑你完成签到 ,获得积分10
22秒前
耿舒婷完成签到,获得积分10
22秒前
23秒前
LIUYI发布了新的文献求助10
27秒前
Patrick完成签到 ,获得积分10
29秒前
毛毛完成签到,获得积分10
31秒前
Owen应助曾经的傲柔采纳,获得10
33秒前
33秒前
neocc123完成签到 ,获得积分10
34秒前
young完成签到,获得积分10
35秒前
35秒前
37秒前
39秒前
zhou发布了新的文献求助10
40秒前
young发布了新的文献求助10
44秒前
44秒前
柠檬柠檬完成签到 ,获得积分10
45秒前
超帅慕晴完成签到,获得积分10
47秒前
zz走野完成签到,获得积分10
47秒前
48秒前
leslie完成签到,获得积分10
49秒前
zhou完成签到,获得积分10
49秒前
潇洒的语蝶完成签到 ,获得积分10
49秒前
zengyiyong发布了新的文献求助10
49秒前
leslie发布了新的文献求助10
51秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261438
求助须知:如何正确求助?哪些是违规求助? 2902237
关于积分的说明 8319436
捐赠科研通 2572152
什么是DOI,文献DOI怎么找? 1397417
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223