CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
烟花应助科研通管家采纳,获得10
刚刚
zzzxhhr发布了新的文献求助10
2秒前
那年那兔那些事完成签到 ,获得积分10
2秒前
Hello应助泷生采纳,获得10
2秒前
ZYC关闭了ZYC文献求助
3秒前
3秒前
chen完成签到 ,获得积分10
4秒前
Akim应助时尚的靖采纳,获得10
5秒前
5秒前
李嘉衡完成签到 ,获得积分10
5秒前
哈哈镜阿姐应助led灯泡采纳,获得10
5秒前
游佩君完成签到,获得积分10
5秒前
6秒前
胡罗卜完成签到,获得积分10
6秒前
xixi完成签到,获得积分20
6秒前
lyx完成签到,获得积分10
6秒前
Kate完成签到,获得积分10
6秒前
7秒前
jason完成签到,获得积分0
7秒前
8秒前
jyylrl发布了新的文献求助10
9秒前
leo发布了新的文献求助10
11秒前
11秒前
wu发布了新的文献求助10
11秒前
12秒前
siriuswings完成签到,获得积分20
12秒前
13秒前
13秒前
赘婿应助喜悦飞鸟采纳,获得10
14秒前
风风完成签到 ,获得积分10
14秒前
蓝天发布了新的文献求助10
14秒前
CAE上路到上吊完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909