CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [BioMed Central]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
谦让之云完成签到 ,获得积分10
1秒前
1秒前
愉快书琴完成签到,获得积分10
2秒前
2秒前
SYLH应助WangZhen采纳,获得10
3秒前
福尔摩云完成签到,获得积分10
4秒前
无辜的秀完成签到,获得积分10
5秒前
Charles完成签到,获得积分10
7秒前
hao发布了新的文献求助10
7秒前
小嘎发布了新的文献求助10
7秒前
ABin完成签到,获得积分10
9秒前
Jasper应助qixiaoqi采纳,获得10
9秒前
FangyingTang完成签到 ,获得积分10
10秒前
金枪鱼子完成签到,获得积分10
10秒前
theyoung发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
赘婿应助liu采纳,获得10
11秒前
小马甲应助清仔采纳,获得10
11秒前
11秒前
luoyue完成签到,获得积分10
11秒前
yuan发布了新的文献求助10
12秒前
科研通AI5应助JR采纳,获得30
12秒前
13秒前
海阔天空发布了新的文献求助10
14秒前
SYLH应助WangZhen采纳,获得10
14秒前
票子发布了新的文献求助10
14秒前
苹果柜子完成签到 ,获得积分10
14秒前
活泼的平灵完成签到,获得积分10
15秒前
愤怒的咖啡完成签到,获得积分10
15秒前
愉快的银耳汤完成签到,获得积分10
16秒前
又又完成签到,获得积分10
17秒前
ypres完成签到 ,获得积分10
18秒前
18秒前
18秒前
zzzk完成签到 ,获得积分10
18秒前
酒精过敏完成签到,获得积分10
18秒前
席冥完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066