已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer

接收机工作特性 列线图 Lasso(编程语言) 无线电技术 卵巢癌 特征选择 肿瘤科 医学 内科学 癌症 人工智能 放射科 计算机科学 万维网
作者
Sheng Wan,Tianfan Zhou,Ronghua Che,Ying Li,Jing Peng,Yuelin Wu,Shengyi Gu,Jiejun Cheng,Xiaolin Hua
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:16 (1) 被引量:18
标识
DOI:10.1186/s13048-022-01089-8
摘要

Abstract Objective We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Methods A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporating radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival prediction. Results CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve the overall survival accuracy of the prediction model. Conclusion The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radiomics could serve as a new tool for prognosis prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cmqq发布了新的文献求助10
刚刚
菲比完成签到 ,获得积分10
2秒前
3秒前
欣喜的薯片完成签到 ,获得积分10
4秒前
打工仔完成签到 ,获得积分10
4秒前
亚亚完成签到 ,获得积分10
5秒前
传统的戎完成签到,获得积分10
5秒前
ceeray23发布了新的文献求助20
6秒前
一二完成签到 ,获得积分10
7秒前
hongyeZhang完成签到 ,获得积分10
8秒前
钮祜禄萱完成签到 ,获得积分10
10秒前
11秒前
华仔应助无心的乾采纳,获得10
12秒前
刘欣欢完成签到 ,获得积分10
12秒前
13秒前
斯文败类应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
灵巧的以亦完成签到 ,获得积分10
15秒前
15秒前
满意妙梦发布了新的文献求助10
16秒前
Thanks完成签到 ,获得积分10
18秒前
Docgyj完成签到 ,获得积分0
18秒前
沉默水瑶完成签到,获得积分10
19秒前
19秒前
cjfc发布了新的文献求助10
21秒前
尊敬紫寒完成签到 ,获得积分10
21秒前
嗨Honey完成签到 ,获得积分10
22秒前
24秒前
chao完成签到,获得积分20
25秒前
yuanyuan发布了新的文献求助10
26秒前
meimei完成签到 ,获得积分0
27秒前
玖念完成签到 ,获得积分10
28秒前
李小伟发布了新的文献求助10
29秒前
30秒前
believe完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685259
关于积分的说明 14838243
捐赠科研通 4669177
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505474
关于科研通互助平台的介绍 1470833