Transfer learning for battery smarter state estimation and ageing prognostics: Recent progress, challenges, and prospects

预言 电池(电) 计算机科学 风险分析(工程) 学习迁移 能源管理 系统工程 工程类 人工智能 能量(信号处理) 功率(物理) 数据挖掘 业务 物理 统计 量子力学 数学
作者
Kailong Liu,Qiao Pan,Yunhong Che,Yusheng Zheng,Kang Li,Remus Teodorescu,Widanalage Dhammika Widanage,Anup Barai
出处
期刊:Advances in applied energy [Elsevier]
卷期号:9: 100117-100117 被引量:27
标识
DOI:10.1016/j.adapen.2022.100117
摘要

With the advent of sustainable and clean energy transitions, lithium-ion batteries have become one of the most important energy storage sources for many applications. Battery management is of utmost importance for the safe, efficient, and long-lasting operation of lithium-ion batteries. However, the frequently changing load and operating conditions, the different cell chemistries and formats, and the complicated degradation patterns pose challenges for traditional battery management. The data-driven solutions that have emerged in recent years offer great opportunities to uncover the underlying data mapping within a battery system. In particular, transfer learning improves the performance of data-driven strategies by transferring existing knowledge from different but related domains, and if properly applied, would be a promising approach for smarter battery management. To this end, this paper presents a systematic review for the applications of transfer learning in the field of battery management for the first time, with particular focuses on battery state estimation and ageing prognostics. Specifically, the general issues faced by conventional battery management are identified and the applications of transfer learning to these issues are summarized. Then, the specific challenges of each topic are identified and the potential solutions based on transfer learning are explained, followed by a discussion of the state of the art in terms of principles, algorithm frameworks, advantages and disadvantages. Finally, future trends of data-driven battery management with transfer learning are discussed in terms of key challenges and promising opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
劲秉应助潦草采纳,获得10
1秒前
Shaangueuropa完成签到,获得积分10
2秒前
思源应助罗健采纳,获得10
2秒前
4秒前
5秒前
风中故事发布了新的文献求助10
5秒前
华仔应助超级香之采纳,获得10
6秒前
SYLH应助华北走地鸡采纳,获得10
8秒前
9秒前
六天完成签到,获得积分20
11秒前
花佩剑发布了新的文献求助10
11秒前
11秒前
bird完成签到,获得积分10
12秒前
13秒前
刘燕完成签到,获得积分10
14秒前
15秒前
田様应助虎虎虎采纳,获得10
16秒前
花佩剑完成签到,获得积分10
16秒前
酷酷友容给David的求助进行了留言
16秒前
慕青应助墨羽采纳,获得10
17秒前
CodeCraft应助yyy采纳,获得10
17秒前
18秒前
jiiiawa应助所得皆所愿采纳,获得10
19秒前
wary发布了新的文献求助10
19秒前
duanhuiyuan应助三七采纳,获得10
21秒前
21秒前
23秒前
huangweiwei完成签到,获得积分10
23秒前
24秒前
Wdwpp发布了新的文献求助30
25秒前
26秒前
jiajie_qin应助科研通管家采纳,获得20
26秒前
duanhuiyuan应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
duanhuiyuan应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664