Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression

偏最小二乘回归 均方误差 校准 数学 决定系数 线性回归 光谱辐射计 高光谱成像 统计 遥感 反射率 光学 物理 地质学
作者
Gláucio Leboso Alemparte Abrantes dos Santos,Amanda Silveira Reis,Marcos Renan Besen,Renato Herrig Furlanetto,Marlon Rodrigues,Luís Guilherme Teixeira Crusiol,Karym Mayara de Oliveira,Renan Falcioni,Roney Berti de Oliveira,Marcelo Augusto Batista,Marcos Rafael Nanni
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:143: 126717-126717 被引量:14
标识
DOI:10.1016/j.eja.2022.126717
摘要

Studies on the use of hyperspectral remote sensing for nutrient prediction in soybean (Glycine max L.) leaves are limited, especially regarding the selection of wavelengths. Therefore, the objective of this study was to estimate macro and micronutrients in soybean leaves by employing reflectance data modeled by Partial Least Squares Regression (PLSR) from bands selected by the iPLS (Interval PLS), method with a script developed for MATLAB R2018a. The experimental area was treated with different doses of limestone, with and without incorporation, also with phosphogypsum application in additional treatments. The soybean crops of 2018/2019 and 2019/2020 had the nutritional status evaluated by a random collection of the third fully developed trefoil in the R2 (full flowering) and R5.5 (76–100% grain filling) reproductive phenological stages. The leaf samples were submitted to conventional laboratory analyses. The Ca, Mg, K, P, S, Cu, Fe, Mn, and Zn elements in the leaves were quantified through spectrometry. A field spectroradiometer performed spectral data acquisition in the visible-near infrared, short-wave infrared spectral range of soybean leaves. The spectral curves were subjected to iPLS, and PLSR models were fitted. After iPLS selection, the coefficient of determination (R2) values of PLSR models were on average 15.3% and 16.6% higher in calibration and validation, respectively, compared to classical methods. The PLSR model for Mn, which obtained R2 above 0.90 in the calibration and validation phases, stood out. The Root Mean Square Error (RMSE) decreased, on average, more than 15.0%, both in calibration and validation, after applying the iPLS selection. The models for Ca and Mn stood out with over a 30.0% decrease in RMSE, in calibration and validation. The iPLS selection was efficient in improving the performance and accuracy of the PLSR models, increasing the R2 and decreasing the RMSE, opening new possibilities for the analysis and prediction of macro and micronutrients in plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪白莲完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
ABU完成签到,获得积分10
2秒前
清秀向卉发布了新的文献求助10
3秒前
宣灵薇完成签到,获得积分0
3秒前
峰1992完成签到,获得积分10
3秒前
莲枳榴莲完成签到,获得积分10
4秒前
正直千兰发布了新的文献求助10
4秒前
JamesPei应助tz107236采纳,获得10
4秒前
4秒前
6秒前
xixi完成签到 ,获得积分10
7秒前
小周发布了新的文献求助10
7秒前
Juni完成签到,获得积分10
8秒前
犹豫的毛豆完成签到,获得积分20
9秒前
余呀余完成签到 ,获得积分10
9秒前
tanglu发布了新的文献求助10
9秒前
lai发布了新的文献求助10
9秒前
苏卿应助六月666采纳,获得80
10秒前
正直的煎饼完成签到,获得积分10
10秒前
10秒前
地沙坦发布了新的文献求助10
10秒前
Mark发布了新的文献求助10
11秒前
乐观小之应助麻辣鱼头采纳,获得10
11秒前
12秒前
Emma发布了新的文献求助10
13秒前
宝宝言兼完成签到,获得积分10
13秒前
着急的小松鼠完成签到,获得积分10
13秒前
KKKK发布了新的文献求助10
13秒前
14秒前
酷波er应助涨秋池采纳,获得10
15秒前
wys发布了新的文献求助10
15秒前
jackhlj完成签到,获得积分10
16秒前
17秒前
17秒前
yiling发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403