已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression

偏最小二乘回归 均方误差 校准 数学 决定系数 线性回归 光谱辐射计 高光谱成像 统计 遥感 反射率 光学 物理 地质学
作者
Gláucio Leboso Alemparte Abrantes dos Santos,Amanda Silveira Reis,Marcos Renan Besen,Renato Herrig Furlanetto,Marlon Rodrigues,Luís Guilherme Teixeira Crusiol,Karym Mayara de Oliveira,Renan Falcioni,Roney Berti de Oliveira,Marcelo Augusto Batista,Marcos Rafael Nanni
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:143: 126717-126717 被引量:14
标识
DOI:10.1016/j.eja.2022.126717
摘要

Studies on the use of hyperspectral remote sensing for nutrient prediction in soybean (Glycine max L.) leaves are limited, especially regarding the selection of wavelengths. Therefore, the objective of this study was to estimate macro and micronutrients in soybean leaves by employing reflectance data modeled by Partial Least Squares Regression (PLSR) from bands selected by the iPLS (Interval PLS), method with a script developed for MATLAB R2018a. The experimental area was treated with different doses of limestone, with and without incorporation, also with phosphogypsum application in additional treatments. The soybean crops of 2018/2019 and 2019/2020 had the nutritional status evaluated by a random collection of the third fully developed trefoil in the R2 (full flowering) and R5.5 (76–100% grain filling) reproductive phenological stages. The leaf samples were submitted to conventional laboratory analyses. The Ca, Mg, K, P, S, Cu, Fe, Mn, and Zn elements in the leaves were quantified through spectrometry. A field spectroradiometer performed spectral data acquisition in the visible-near infrared, short-wave infrared spectral range of soybean leaves. The spectral curves were subjected to iPLS, and PLSR models were fitted. After iPLS selection, the coefficient of determination (R2) values of PLSR models were on average 15.3% and 16.6% higher in calibration and validation, respectively, compared to classical methods. The PLSR model for Mn, which obtained R2 above 0.90 in the calibration and validation phases, stood out. The Root Mean Square Error (RMSE) decreased, on average, more than 15.0%, both in calibration and validation, after applying the iPLS selection. The models for Ca and Mn stood out with over a 30.0% decrease in RMSE, in calibration and validation. The iPLS selection was efficient in improving the performance and accuracy of the PLSR models, increasing the R2 and decreasing the RMSE, opening new possibilities for the analysis and prediction of macro and micronutrients in plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhang发布了新的文献求助10
1秒前
1秒前
英俊的铭应助啦啦采纳,获得20
3秒前
123完成签到 ,获得积分10
8秒前
8秒前
火火完成签到,获得积分10
9秒前
Amor发布了新的文献求助10
13秒前
新手上路完成签到,获得积分10
16秒前
HH完成签到 ,获得积分10
17秒前
Kristopher完成签到 ,获得积分10
18秒前
21秒前
后陡门爱神完成签到 ,获得积分10
21秒前
小蝶完成签到 ,获得积分10
23秒前
无产阶级科学者完成签到,获得积分10
23秒前
TIDUS完成签到,获得积分10
24秒前
zzz发布了新的文献求助10
25秒前
大模型应助难得有点闲采纳,获得10
30秒前
a36380382完成签到,获得积分10
30秒前
落雪完成签到 ,获得积分10
30秒前
30秒前
欣喜的诗筠完成签到 ,获得积分10
31秒前
Yong完成签到,获得积分10
31秒前
31秒前
31秒前
斯文败类应助huiqin采纳,获得10
32秒前
yhgz完成签到,获得积分10
32秒前
Luminous完成签到,获得积分10
34秒前
35秒前
yyqx发布了新的文献求助10
35秒前
hhee发布了新的文献求助10
36秒前
可爱的函函应助喜悦又菡采纳,获得10
37秒前
37秒前
Yong发布了新的文献求助30
37秒前
TIDUS完成签到,获得积分10
38秒前
38秒前
慕青应助Snow采纳,获得10
39秒前
会会发布了新的文献求助10
39秒前
杨晓茳发布了新的文献求助10
39秒前
582843216发布了新的文献求助10
40秒前
我智力有问题完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504