Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression

偏最小二乘回归 均方误差 校准 数学 决定系数 线性回归 光谱辐射计 高光谱成像 统计 遥感 反射率 光学 物理 地质学
作者
Gláucio Leboso Alemparte Abrantes dos Santos,Amanda Silveira Reis,Marcos Renan Besen,Renato Herrig Furlanetto,Marlon Rodrigues,Luís Guilherme Teixeira Crusiol,Karym Mayara de Oliveira,Renan Falcioni,Roney Berti de Oliveira,Marcelo Augusto Batista,Marcos Rafael Nanni
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:143: 126717-126717 被引量:14
标识
DOI:10.1016/j.eja.2022.126717
摘要

Studies on the use of hyperspectral remote sensing for nutrient prediction in soybean (Glycine max L.) leaves are limited, especially regarding the selection of wavelengths. Therefore, the objective of this study was to estimate macro and micronutrients in soybean leaves by employing reflectance data modeled by Partial Least Squares Regression (PLSR) from bands selected by the iPLS (Interval PLS), method with a script developed for MATLAB R2018a. The experimental area was treated with different doses of limestone, with and without incorporation, also with phosphogypsum application in additional treatments. The soybean crops of 2018/2019 and 2019/2020 had the nutritional status evaluated by a random collection of the third fully developed trefoil in the R2 (full flowering) and R5.5 (76–100% grain filling) reproductive phenological stages. The leaf samples were submitted to conventional laboratory analyses. The Ca, Mg, K, P, S, Cu, Fe, Mn, and Zn elements in the leaves were quantified through spectrometry. A field spectroradiometer performed spectral data acquisition in the visible-near infrared, short-wave infrared spectral range of soybean leaves. The spectral curves were subjected to iPLS, and PLSR models were fitted. After iPLS selection, the coefficient of determination (R2) values of PLSR models were on average 15.3% and 16.6% higher in calibration and validation, respectively, compared to classical methods. The PLSR model for Mn, which obtained R2 above 0.90 in the calibration and validation phases, stood out. The Root Mean Square Error (RMSE) decreased, on average, more than 15.0%, both in calibration and validation, after applying the iPLS selection. The models for Ca and Mn stood out with over a 30.0% decrease in RMSE, in calibration and validation. The iPLS selection was efficient in improving the performance and accuracy of the PLSR models, increasing the R2 and decreasing the RMSE, opening new possibilities for the analysis and prediction of macro and micronutrients in plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的鼠标完成签到,获得积分10
刚刚
1秒前
meatball1982发布了新的文献求助10
1秒前
次年完成签到,获得积分20
2秒前
缥缈的松鼠完成签到 ,获得积分10
4秒前
5秒前
田建设发布了新的文献求助10
6秒前
科研通AI6.1应助看文献了采纳,获得10
8秒前
lw完成签到,获得积分10
10秒前
p65完成签到,获得积分10
12秒前
从你的全世界路过完成签到,获得积分20
14秒前
14秒前
喜悦的清炎完成签到 ,获得积分10
15秒前
FashionBoy应助周至采纳,获得10
15秒前
他们叫我小伟完成签到 ,获得积分10
18秒前
18秒前
玺青一生完成签到 ,获得积分10
18秒前
不弱小妖完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
wx发布了新的文献求助30
20秒前
xdm完成签到,获得积分10
21秒前
Mia2发布了新的文献求助20
21秒前
21秒前
空白完成签到 ,获得积分10
22秒前
qizhang发布了新的文献求助10
24秒前
ghpi完成签到,获得积分10
24秒前
ents完成签到,获得积分10
24秒前
24秒前
24秒前
ttrr完成签到,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助30
27秒前
27秒前
27秒前
聪明海云发布了新的文献求助10
28秒前
29秒前
笨笨的太清完成签到,获得积分10
29秒前
笨笨思松完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932