Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression

偏最小二乘回归 均方误差 校准 数学 决定系数 线性回归 光谱辐射计 高光谱成像 统计 遥感 反射率 光学 物理 地质学
作者
Gláucio Leboso Alemparte Abrantes dos Santos,Amanda Silveira Reis,Marcos Renan Besen,Renato Herrig Furlanetto,Marlon Rodrigues,Luís Guilherme Teixeira Crusiol,Karym Mayara de Oliveira,Renan Falcioni,Roney Berti de Oliveira,Marcelo Augusto Batista,Marcos Rafael Nanni
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:143: 126717-126717 被引量:14
标识
DOI:10.1016/j.eja.2022.126717
摘要

Studies on the use of hyperspectral remote sensing for nutrient prediction in soybean (Glycine max L.) leaves are limited, especially regarding the selection of wavelengths. Therefore, the objective of this study was to estimate macro and micronutrients in soybean leaves by employing reflectance data modeled by Partial Least Squares Regression (PLSR) from bands selected by the iPLS (Interval PLS), method with a script developed for MATLAB R2018a. The experimental area was treated with different doses of limestone, with and without incorporation, also with phosphogypsum application in additional treatments. The soybean crops of 2018/2019 and 2019/2020 had the nutritional status evaluated by a random collection of the third fully developed trefoil in the R2 (full flowering) and R5.5 (76–100% grain filling) reproductive phenological stages. The leaf samples were submitted to conventional laboratory analyses. The Ca, Mg, K, P, S, Cu, Fe, Mn, and Zn elements in the leaves were quantified through spectrometry. A field spectroradiometer performed spectral data acquisition in the visible-near infrared, short-wave infrared spectral range of soybean leaves. The spectral curves were subjected to iPLS, and PLSR models were fitted. After iPLS selection, the coefficient of determination (R2) values of PLSR models were on average 15.3% and 16.6% higher in calibration and validation, respectively, compared to classical methods. The PLSR model for Mn, which obtained R2 above 0.90 in the calibration and validation phases, stood out. The Root Mean Square Error (RMSE) decreased, on average, more than 15.0%, both in calibration and validation, after applying the iPLS selection. The models for Ca and Mn stood out with over a 30.0% decrease in RMSE, in calibration and validation. The iPLS selection was efficient in improving the performance and accuracy of the PLSR models, increasing the R2 and decreasing the RMSE, opening new possibilities for the analysis and prediction of macro and micronutrients in plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Susan采纳,获得10
1秒前
美好斓发布了新的文献求助10
1秒前
学术大白完成签到 ,获得积分10
2秒前
Puby完成签到 ,获得积分10
3秒前
5秒前
albertchan完成签到,获得积分10
5秒前
malistm完成签到,获得积分10
6秒前
liu完成签到,获得积分10
6秒前
Puby关注了科研通微信公众号
6秒前
8秒前
DreamerKing发布了新的文献求助10
9秒前
malistm发布了新的文献求助10
11秒前
dddd完成签到,获得积分10
12秒前
David给David的求助进行了留言
13秒前
ss完成签到 ,获得积分10
15秒前
16秒前
lzd完成签到,获得积分10
17秒前
20秒前
DreamerKing完成签到,获得积分10
20秒前
拼搏向上发布了新的文献求助10
21秒前
ttt完成签到,获得积分10
24秒前
25秒前
njr完成签到,获得积分10
25秒前
我是老大应助二小采纳,获得10
27秒前
附姜完成签到 ,获得积分10
28秒前
不会失忆完成签到,获得积分10
28秒前
苏卿应助霹雳娇娃采纳,获得10
30秒前
30秒前
慕青应助哈拉少采纳,获得10
31秒前
暴躁的花生完成签到 ,获得积分10
31秒前
31秒前
怕孤单的听寒完成签到,获得积分10
31秒前
科研工作者完成签到,获得积分10
32秒前
wlj完成签到 ,获得积分10
33秒前
KimTran应助ss采纳,获得10
34秒前
暴躁的花生关注了科研通微信公众号
34秒前
君君菌菌博士完成签到,获得积分10
36秒前
九城发布了新的文献求助10
36秒前
林深鹿关注了科研通微信公众号
39秒前
不会学术的羊完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905