清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spectral method for macro and micronutrient prediction in soybean leaves using interval partial least squares regression

偏最小二乘回归 均方误差 校准 数学 决定系数 线性回归 光谱辐射计 高光谱成像 统计 遥感 反射率 光学 物理 地质学
作者
Gláucio Leboso Alemparte Abrantes dos Santos,Amanda Silveira Reis,Marcos Renan Besen,Renato Herrig Furlanetto,Marlon Rodrigues,Luís Guilherme Teixeira Crusiol,Karym Mayara de Oliveira,Renan Falcioni,Roney Berti de Oliveira,Marcelo Augusto Batista,Marcos Rafael Nanni
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:143: 126717-126717 被引量:14
标识
DOI:10.1016/j.eja.2022.126717
摘要

Studies on the use of hyperspectral remote sensing for nutrient prediction in soybean (Glycine max L.) leaves are limited, especially regarding the selection of wavelengths. Therefore, the objective of this study was to estimate macro and micronutrients in soybean leaves by employing reflectance data modeled by Partial Least Squares Regression (PLSR) from bands selected by the iPLS (Interval PLS), method with a script developed for MATLAB R2018a. The experimental area was treated with different doses of limestone, with and without incorporation, also with phosphogypsum application in additional treatments. The soybean crops of 2018/2019 and 2019/2020 had the nutritional status evaluated by a random collection of the third fully developed trefoil in the R2 (full flowering) and R5.5 (76–100% grain filling) reproductive phenological stages. The leaf samples were submitted to conventional laboratory analyses. The Ca, Mg, K, P, S, Cu, Fe, Mn, and Zn elements in the leaves were quantified through spectrometry. A field spectroradiometer performed spectral data acquisition in the visible-near infrared, short-wave infrared spectral range of soybean leaves. The spectral curves were subjected to iPLS, and PLSR models were fitted. After iPLS selection, the coefficient of determination (R2) values of PLSR models were on average 15.3% and 16.6% higher in calibration and validation, respectively, compared to classical methods. The PLSR model for Mn, which obtained R2 above 0.90 in the calibration and validation phases, stood out. The Root Mean Square Error (RMSE) decreased, on average, more than 15.0%, both in calibration and validation, after applying the iPLS selection. The models for Ca and Mn stood out with over a 30.0% decrease in RMSE, in calibration and validation. The iPLS selection was efficient in improving the performance and accuracy of the PLSR models, increasing the R2 and decreasing the RMSE, opening new possibilities for the analysis and prediction of macro and micronutrients in plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随心所欲完成签到 ,获得积分10
2秒前
希望天下0贩的0应助niko采纳,获得10
4秒前
情怀应助niko采纳,获得10
4秒前
科研通AI6应助niko采纳,获得10
4秒前
所所应助niko采纳,获得10
4秒前
科研通AI6应助niko采纳,获得10
4秒前
情怀应助niko采纳,获得10
4秒前
无花果应助niko采纳,获得10
4秒前
上官若男应助niko采纳,获得10
4秒前
研友_VZG7GZ应助niko采纳,获得10
4秒前
小蘑菇应助niko采纳,获得30
4秒前
嗯嗯的嗯嗯完成签到,获得积分10
5秒前
小蘑菇应助niko采纳,获得10
9秒前
Hello应助niko采纳,获得10
9秒前
JamesPei应助niko采纳,获得10
9秒前
慕青应助niko采纳,获得10
9秒前
科研通AI6应助niko采纳,获得10
9秒前
Ava应助niko采纳,获得10
9秒前
英俊的铭应助niko采纳,获得10
10秒前
科目三应助niko采纳,获得10
10秒前
上官若男应助niko采纳,获得10
10秒前
Ava应助niko采纳,获得10
10秒前
11秒前
19秒前
24秒前
31秒前
42秒前
45秒前
论文写到头秃完成签到,获得积分20
47秒前
51秒前
量子星尘发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981