经肺压
医学
振膜(声学)
肺
机械通风
肺容积
麻醉
气道
心脏病学
内科学
声学
物理
扬声器
作者
Heder de Vries,Pieter R. Tuinman,Annemijn H. Jonkman,Ling Liu,Haibo Qiu,Armand R. J. Girbes,YingRui Zhang,A. M. E. de Man,Harm-Jan de Grooth,Leo Heunks
出处
期刊:Anesthesiology
[Ovid Technologies (Wolters Kluwer)]
日期:2022-12-15
卷期号:138 (3): 274-288
被引量:10
标识
DOI:10.1097/aln.0000000000004467
摘要
Background Monitoring and controlling lung stress and diaphragm effort has been hypothesized to limit lung injury and diaphragm injury. The occluded inspiratory airway pressure (Pocc) and the airway occlusion pressure at 100 ms (P0.1) have been used as noninvasive methods to assess lung stress and respiratory muscle effort, but comparative performance of these measures and their correlation to diaphragm effort is unknown. The authors hypothesized that Pocc and P0.1 correlate with diaphragm effort and lung stress and would have strong discriminative performance in identifying extremes of lung stress and diaphragm effort. Methods Change in transdiaphragmatic pressure and transpulmonary pressure was obtained with double-balloon nasogastric catheters in critically ill patients (n = 38). Pocc and P0.1 were measured every 1 to 3 h. Correlations between Pocc and P0.1 with change in transdiaphragmatic pressure and transpulmonary pressure were computed from patients from the first cohort. Accuracy of Pocc and P0.1 to identify patients with extremes of lung stress (change in transpulmonary pressure > 20 cm H2O) and diaphragm effort (change in transdiaphragmatic pressure < 3 cm H2O and >12 cm H2O) in the preceding hour was assessed with area under receiver operating characteristic curves. Cutoffs were validated in patients from the second cohort (n = 13). Results Pocc and P0.1 correlate with change in transpulmonary pressure (R2 = 0.62 and 0.51, respectively) and change in transdiaphragmatic pressure (R2 = 0.53 and 0.22, respectively). Area under receiver operating characteristic curves to detect high lung stress is 0.90 (0.86 to 0.94) for Pocc and 0.88 (0.84 to 0.92) for P0.1. Area under receiver operating characteristic curves to detect low diaphragm effort is 0.97 (0.87 to 1.00) for Pocc and 0.93 (0.81 to 0.99) for P0.1. Area under receiver operating characteristic curves to detect high diaphragm effort is 0.86 (0.81 to 0.91) for Pocc and 0.73 (0.66 to 0.79) for P0.1. Performance was similar in the external dataset. Conclusions Pocc and P0.1 correlate with lung stress and diaphragm effort in the preceding hour. Diagnostic performance of Pocc and P0.1 to detect extremes in these parameters is reasonable to excellent. Pocc is more accurate in detecting high diaphragm effort. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
科研通智能强力驱动
Strongly Powered by AbleSci AI