A dual branch and fine-grained enhancement network for pancreatic tumor segmentation in contrast enhanced CT images

分割 计算机科学 胰腺 人工智能 胰腺癌 特征(语言学) 编码器 对比度(视觉) 模式识别(心理学) 计算机视觉 医学 癌症 内科学 语言学 哲学 操作系统
作者
Zhibang Zhou,Yun Bian,Shengxue Pan,Qingquan Meng,Weifang Zhu,Fei Shi,Xinjian Chen,Chengwei Shao,Dehui Xiang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104516-104516 被引量:8
标识
DOI:10.1016/j.bspc.2022.104516
摘要

Segmentation of pancreatic tumors in CT images is important for clinical diagnosis and treatment, but it faces challenges of small size, low contrast, and large position difference. To address these issues, the abnormal pancreas is first segmented based on a dual branch coding network (DB-Net) using a coarse-to-fine segmentation strategy. In the encoder part, one branch extracts the semantic features of the pancreas and its surroundings, and the other branch captures the complex pancreas through wide-channel convolution and few down-sampling operations. An aggregation layer is used to fuse the different feature maps obtained by the two branches, and a U-Net decoder is used to segment the abnormal pancreas in CT images with pancreatic tumors. DB-Net is further trained to obtain the accurate pancreatic segmentation. Then, pancreatic tumors are segmented in the pancreas based on the fine-grained enhancement network (FE-Net). The FE-Net integrates a contrast enhancement block with a reverse attention block to extract detailed features and excavate effective information from the feature maps of the encoder and decoder to segment pancreatic tumors. In order to segment the tumor more accurately, the pancreatic tumor is segmented in the cropped pancreas. Experiments on 116 contrast-enhanced abdominal CT volumes of pancreatic cancer and 42 contrast-enhanced abdominal CT volumes of normal pancreas verify the effectiveness of the proposed framework in pancreatic tumor segmentation by using the two-fold cross-validation strategy. Compared to state-of-the-art deep learning segmentation network, the proposed method can achieve better segmentation of pancreas and pancreatic tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LQQ发布了新的文献求助10
1秒前
小幸运完成签到,获得积分10
3秒前
Owen应助小吕小吕采纳,获得10
3秒前
4秒前
whh发布了新的文献求助10
4秒前
4秒前
能干的孤风应助含章采纳,获得10
4秒前
5秒前
隐形曼青应助12344采纳,获得10
5秒前
RARA-发布了新的文献求助10
6秒前
7秒前
zrw发布了新的文献求助10
8秒前
FashionBoy应助细心冰之采纳,获得10
8秒前
8秒前
sldelibra完成签到 ,获得积分20
8秒前
8秒前
落寞的白玉关注了科研通微信公众号
8秒前
9秒前
9秒前
虎帅发布了新的文献求助20
9秒前
9秒前
9秒前
在水一方应助婷婷采纳,获得10
10秒前
10秒前
10秒前
搜集达人应助guoqiqi采纳,获得10
10秒前
大个应助萧羽采纳,获得10
11秒前
felix发布了新的文献求助10
11秒前
11秒前
Hello应助burrrrr采纳,获得10
11秒前
felix发布了新的文献求助10
11秒前
怕黑又蓝发布了新的文献求助10
11秒前
felix发布了新的文献求助10
11秒前
cbbb完成签到,获得积分10
12秒前
13秒前
13秒前
SWZ发布了新的文献求助10
14秒前
韩晴发布了新的文献求助10
14秒前
星辰大海应助you采纳,获得10
14秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386522
求助须知:如何正确求助?哪些是违规求助? 2999620
关于积分的说明 8785988
捐赠科研通 2685313
什么是DOI,文献DOI怎么找? 1470931
科研通“疑难数据库(出版商)”最低求助积分说明 680031
邀请新用户注册赠送积分活动 672645