隐写术
计算机科学
自编码
稳健性(进化)
有效载荷(计算)
封面(代数)
数字水印
嵌入
人工智能
编码(集合论)
图像质量
隐写工具
计算机视觉
信息隐藏
图像(数学)
计算机安全
深度学习
工程类
基因
机械工程
生物化学
网络数据包
集合(抽象数据类型)
化学
程序设计语言
作者
Tien D. Bui,Shruti Agarwal,Na Yu,John Collomosse
出处
期刊:Cornell University - arXiv
日期:2023-04-06
标识
DOI:10.48550/arxiv.2304.03400
摘要
Data hiding such as steganography and invisible watermarking has important applications in copyright protection, privacy-preserved communication and content provenance. Existing works often fall short in either preserving image quality, or robustness against perturbations or are too complex to train. We propose RoSteALS, a practical steganography technique leveraging frozen pretrained autoencoders to free the payload embedding from learning the distribution of cover images. RoSteALS has a light-weight secret encoder of just 300k parameters, is easy to train, has perfect secret recovery performance and comparable image quality on three benchmarks. Additionally, RoSteALS can be adapted for novel cover-less steganography applications in which the cover image can be sampled from noise or conditioned on text prompts via a denoising diffusion process. Our model and code are available at \url{https://github.com/TuBui/RoSteALS}.
科研通智能强力驱动
Strongly Powered by AbleSci AI