Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA

分类 计算机科学 启发式 遗传算法 公制(单位) 模糊逻辑 过程(计算) 推论 元启发式 机器学习 数学优化 人工智能 算法 数学 运营管理 工程类 操作系统
作者
Peyman Rabiei,Daniel Arias Aranda,Vladimir Stantchev
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:226: 120142-120142 被引量:16
标识
DOI:10.1016/j.eswa.2023.120142
摘要

Each year, disasters (natural or man-made) cause a lot of damage and take many people's lives. In this situation, many volunteers come to help. While the proper management of volunteers is very effective in controlling the crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is minimizing the mean importance of Emergency Department (ED) centers' unmet needs by volunteers, and the second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers' knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same performance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating linguistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can easily choose the most appropriate solution among the Pareto front based on the circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
辛勤的寄瑶完成签到,获得积分10
1秒前
Lauren完成签到 ,获得积分10
2秒前
3秒前
忆枫完成签到,获得积分10
7秒前
炒鸡小将发布了新的文献求助10
7秒前
花壳在逃野猪完成签到 ,获得积分10
7秒前
7秒前
银子吃好的完成签到,获得积分10
8秒前
西瓜霜完成签到 ,获得积分10
8秒前
科研废物完成签到 ,获得积分10
10秒前
冬月完成签到,获得积分10
10秒前
10秒前
马东完成签到,获得积分10
12秒前
搜集达人应助动听的秋白采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
华仔应助炒鸡小将采纳,获得10
14秒前
chizhi完成签到,获得积分10
14秒前
雪雨夜心应助白智妍采纳,获得10
15秒前
祁乐安发布了新的文献求助20
16秒前
fang应助科研通管家采纳,获得10
17秒前
梵高的向日葵完成签到,获得积分10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
清爽的碧空完成签到,获得积分10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
fang应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得30
18秒前
fang应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
冷艳后妈完成签到,获得积分20
19秒前
激情的纲完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029