Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA

分类 计算机科学 启发式 遗传算法 公制(单位) 模糊逻辑 过程(计算) 推论 元启发式 机器学习 数学优化 人工智能 算法 数学 运营管理 工程类 操作系统
作者
Peyman Rabiei,Daniel Arias Aranda,Vladimir Stantchev
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:226: 120142-120142 被引量:16
标识
DOI:10.1016/j.eswa.2023.120142
摘要

Each year, disasters (natural or man-made) cause a lot of damage and take many people's lives. In this situation, many volunteers come to help. While the proper management of volunteers is very effective in controlling the crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is minimizing the mean importance of Emergency Department (ED) centers' unmet needs by volunteers, and the second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers' knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same performance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating linguistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can easily choose the most appropriate solution among the Pareto front based on the circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助HighFeng_Lei采纳,获得10
1秒前
YanZ830发布了新的文献求助10
1秒前
crystal发布了新的文献求助10
1秒前
1秒前
TT完成签到,获得积分10
2秒前
2秒前
沉默的觅海完成签到,获得积分10
2秒前
3秒前
赘婿应助伦纳德采纳,获得30
3秒前
Yang完成签到,获得积分10
3秒前
ranj发布了新的文献求助10
3秒前
单纯胡萝卜完成签到,获得积分10
3秒前
义气若冰完成签到,获得积分10
3秒前
研友_VZG7GZ应助huizi采纳,获得10
4秒前
4秒前
pluto应助淬h采纳,获得10
5秒前
香蕉觅云应助淬h采纳,获得10
5秒前
yimi完成签到,获得积分10
5秒前
an发布了新的文献求助10
5秒前
5秒前
机智的寻真完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
UP完成签到,获得积分10
6秒前
123456完成签到,获得积分20
7秒前
8秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
马蹄发布了新的文献求助10
9秒前
9秒前
Giinjju发布了新的文献求助10
9秒前
9秒前
惊执虫儿发布了新的文献求助10
9秒前
CipherSage应助张冰倩采纳,获得10
10秒前
YanZ830完成签到,获得积分10
11秒前
11秒前
SYLH应助称心的菲鹰采纳,获得10
12秒前
坤123完成签到,获得积分20
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054