亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA

分类 计算机科学 启发式 遗传算法 公制(单位) 模糊逻辑 过程(计算) 推论 元启发式 机器学习 数学优化 人工智能 算法 数学 运营管理 工程类 操作系统
作者
Peyman Rabiei,Daniel Arias Aranda,Vladimir Stantchev
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:226: 120142-120142 被引量:16
标识
DOI:10.1016/j.eswa.2023.120142
摘要

Each year, disasters (natural or man-made) cause a lot of damage and take many people's lives. In this situation, many volunteers come to help. While the proper management of volunteers is very effective in controlling the crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is minimizing the mean importance of Emergency Department (ED) centers' unmet needs by volunteers, and the second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers' knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same performance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating linguistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can easily choose the most appropriate solution among the Pareto front based on the circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
研友_ZAVbe8完成签到,获得积分0
8秒前
pinklay完成签到 ,获得积分10
17秒前
科研通AI2S应助gougoudy采纳,获得10
21秒前
豆包发布了新的文献求助10
30秒前
37秒前
wcj发布了新的文献求助10
43秒前
Fzx2664242918发布了新的文献求助10
50秒前
50秒前
Fzx2664242918完成签到,获得积分10
56秒前
碳烤小黑茶完成签到 ,获得积分10
1分钟前
light发布了新的文献求助10
1分钟前
1分钟前
活泼蛋挞发布了新的文献求助10
1分钟前
1分钟前
1分钟前
虚心的冥王星完成签到,获得积分10
1分钟前
李爱国应助虚心的冥王星采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得10
1分钟前
wszzb完成签到,获得积分10
1分钟前
谦让小咖啡完成签到 ,获得积分10
1分钟前
樱桃猴子完成签到,获得积分10
2分钟前
爱静静完成签到,获得积分0
2分钟前
NexusExplorer应助欢呼的忘幽采纳,获得10
2分钟前
雪白的面包完成签到 ,获得积分10
2分钟前
picapica668完成签到,获得积分10
2分钟前
魏白晴完成签到,获得积分10
2分钟前
欢呼的忘幽完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
无奈的鹤发布了新的文献求助10
2分钟前
活泼蛋挞完成签到,获得积分10
2分钟前
jixuzhuixun完成签到 ,获得积分10
2分钟前
小刘完成签到,获得积分10
3分钟前
3分钟前
超级纸飞机完成签到,获得积分10
3分钟前
斯文败类应助thousandlong采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130136
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750401
捐赠科研通 2436101
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623716
版权声明 600570