亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA

分类 计算机科学 启发式 遗传算法 公制(单位) 模糊逻辑 过程(计算) 推论 元启发式 机器学习 数学优化 人工智能 算法 数学 运营管理 工程类 操作系统
作者
Peyman Rabiei,Daniel Arias Aranda,Vladimir Stantchev
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:226: 120142-120142 被引量:16
标识
DOI:10.1016/j.eswa.2023.120142
摘要

Each year, disasters (natural or man-made) cause a lot of damage and take many people's lives. In this situation, many volunteers come to help. While the proper management of volunteers is very effective in controlling the crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is minimizing the mean importance of Emergency Department (ED) centers' unmet needs by volunteers, and the second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers' knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same performance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating linguistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can easily choose the most appropriate solution among the Pareto front based on the circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
14秒前
14秒前
一杆长空发布了新的文献求助10
19秒前
23秒前
Djnsbj发布了新的文献求助10
25秒前
孙孙发布了新的文献求助50
27秒前
31秒前
33秒前
35秒前
123发布了新的文献求助20
37秒前
科目三应助lan采纳,获得10
38秒前
临水思长发布了新的文献求助10
39秒前
kdjm688发布了新的文献求助10
42秒前
雪白的面包完成签到 ,获得积分10
46秒前
49秒前
lan发布了新的文献求助10
53秒前
54秒前
一杆长空完成签到,获得积分10
56秒前
热情的未来完成签到,获得积分20
1分钟前
义气的蝴蝶完成签到,获得积分10
1分钟前
1分钟前
临水思长完成签到,获得积分10
1分钟前
Lyuhng+1完成签到 ,获得积分10
1分钟前
jyy应助薄红采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kdjm688发布了新的文献求助10
1分钟前
科研通AI2S应助cos采纳,获得10
1分钟前
FashionBoy应助cos采纳,获得10
1分钟前
多情的忆之完成签到,获得积分10
1分钟前
pamper完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
零度完成签到 ,获得积分10
1分钟前
kdjm688发布了新的文献求助10
1分钟前
超级微笑完成签到 ,获得积分10
1分钟前
1分钟前
领导范儿应助完美的流沙采纳,获得10
1分钟前
酷酷的枕头完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204542
捐赠科研通 3257350
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613