Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA

分类 计算机科学 启发式 遗传算法 公制(单位) 模糊逻辑 过程(计算) 推论 元启发式 机器学习 数学优化 人工智能 算法 数学 运营管理 工程类 操作系统
作者
Peyman Rabiei,Daniel Arias Aranda,Vladimir Stantchev
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:226: 120142-120142 被引量:19
标识
DOI:10.1016/j.eswa.2023.120142
摘要

Each year, disasters (natural or man-made) cause a lot of damage and take many people's lives. In this situation, many volunteers come to help. While the proper management of volunteers is very effective in controlling the crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is minimizing the mean importance of Emergency Department (ED) centers' unmet needs by volunteers, and the second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers' knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same performance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating linguistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can easily choose the most appropriate solution among the Pareto front based on the circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
雾1206发布了新的文献求助10
2秒前
英俊的铭应助小木林采纳,获得10
3秒前
无极微光发布了新的文献求助20
3秒前
华仔应助123456采纳,获得10
3秒前
7秒前
8秒前
Ccccsa完成签到,获得积分20
9秒前
乐乐应助石榴汁的书采纳,获得10
9秒前
10秒前
10秒前
怕孤单的绝义完成签到,获得积分10
10秒前
顺利寻真发布了新的文献求助20
11秒前
12秒前
英俊的铭应助无极微光采纳,获得10
12秒前
失眠洋葱发布了新的文献求助10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
pluto应助ZX采纳,获得10
14秒前
15秒前
小木林发布了新的文献求助10
15秒前
sunny发布了新的文献求助10
16秒前
17秒前
hzt完成签到,获得积分20
18秒前
JM关闭了JM文献求助
18秒前
辛勤的绮琴完成签到,获得积分10
20秒前
无极微光发布了新的文献求助10
22秒前
木泽完成签到,获得积分10
22秒前
科研通AI6应助hzt采纳,获得10
23秒前
小木林完成签到,获得积分10
23秒前
23秒前
天苍野茫发布了新的文献求助10
24秒前
24秒前
asd应助kexian_ning采纳,获得30
25秒前
26秒前
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031