Metagenomic next-generation sequencing for the identification of infections caused by Gram-negative pathogens and the prediction of antimicrobial resistance

基因组 抗生素耐药性 抗菌剂 生物 病菌 抗生素 微生物学 DNA测序 抗药性 计算生物学 细菌 基因 遗传学
作者
Yanghua Xiao,Zhao-Xia Luo,Hong-Wen Wu,Derong Xu,Rui Zhao
出处
期刊:Labmedicine [Oxford University Press]
被引量:1
标识
DOI:10.1093/labmed/lmad039
摘要

Abstract Objective The aim of this study was to evaluate the efficacy of metagenomic next-generation sequencing (mNGS) for the identification of Gram-negative bacteria (GNB) infections and the prediction of antimicrobial resistance. Methods A retrospective analysis was conducted on 182 patients with diagnosis of GNB infections who underwent mNGS and conventional microbiological tests (CMTs). Results The detection rate of mNGS was 96.15%, higher than CMTs (45.05%) with a significant difference (χ 2 = 114.46, P < .01). The pathogen spectrum identified by mNGS was significantly wider than CMTs. Interestingly, the detection rate of mNGS was substantially higher than that of CMTs (70.33% vs 23.08%, P < .01) in patients with but not without antibiotic exposure. There was a significant positive correlation between mapped reads and pro-inflammatory cytokines (interleukin-6 and interleukin-8). However, mNGS failed to predict antimicrobial resistance in 5 of 12 patients compared to phenotype antimicrobial susceptibility testing results. Conclusions Metagenomic next-generation sequencing has a higher detection rate, a wider pathogen spectrum, and is less affected by prior antibiotic exposure than CMTs in identifying Gram-negative pathogens. The mapped reads may reflect a pro-inflammatory state in GNB-infected patients. Inferring actual resistance phenotypes from metagenomic data remains a great challenge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂奔的蜗牛完成签到,获得积分10
刚刚
赘婿应助chenzhi采纳,获得10
3秒前
隐形曼青应助彪壮的吐司采纳,获得10
3秒前
liu完成签到 ,获得积分10
4秒前
5秒前
yydd完成签到,获得积分10
7秒前
wxt完成签到,获得积分10
7秒前
zhu发布了新的文献求助10
10秒前
tracer526发布了新的文献求助10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
warithy应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
草东树应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
浮游应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
16秒前
20秒前
22秒前
22秒前
regina发布了新的文献求助10
23秒前
qin完成签到,获得积分10
29秒前
Lny发布了新的文献求助20
30秒前
31秒前
32秒前
33秒前
爆米花应助tracer526采纳,获得10
34秒前
独特广山发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963