An optimal allocation method for power distribution network partitions based on improved spectral clustering algorithm

计算机科学 聚类分析 粒子群优化 蒙特卡罗方法 数学优化 算法 分拆(数论) 光谱聚类 数学 人工智能 统计 组合数学
作者
Pan Li,Zhang Han,Shenghui Zhao,Feng Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106497-106497 被引量:5
标识
DOI:10.1016/j.engappai.2023.106497
摘要

Distribution network nodes are numerous and monitoring devices are widely distributed. All monitoring data are uploaded to the cloud master for centralized processing may cause serious problems, such as network congestion, information delay and high computational complexity. The edge computing can provide a good solution, which requires reasonable distribution network partition. This paper proposes a Monte Carlo optimized spectral clustering (MCOSC) distribution network partition method for edge server configuration. Firstly, the objective function of distribution network partition number is constructed with economic and real-time communication indexes, which are more suitable for edge computing than electrical distance and voltage sensitivity indexes. Then the optimal number of partitions is obtained by particle swarm optimization (PSO) with the constraints of communication reliability. Secondly, to solve the problem that the traditional spectral clustering is easy to fall into the local optimal solution, a Monte Carlo optimized spectral clustering method is proposed to make the distribution network partition results more reasonable. Finally, the performance of the proposed method is evaluated by IEEE 33 bus and 69 bus systems distribution network models. The results indicate that the Monte Carlo optimization partition method has better accurate, robustness and convergence speed than traditional spectral clustering method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alpes发布了新的文献求助30
刚刚
llwxx完成签到,获得积分10
1秒前
1秒前
RJ发布了新的文献求助10
1秒前
3秒前
3秒前
鲸鱼打滚发布了新的文献求助10
3秒前
科研通AI2S应助cui18采纳,获得10
3秒前
Changfh完成签到 ,获得积分10
3秒前
4秒前
4秒前
汉堡包应助浪费青春传奇采纳,获得10
4秒前
4秒前
薯条发布了新的文献求助10
5秒前
5秒前
deer发布了新的文献求助10
5秒前
Bertha完成签到,获得积分10
5秒前
Novoa发布了新的文献求助10
5秒前
5秒前
万能图书馆应助ZXC采纳,获得10
5秒前
6秒前
搜集达人应助优美的唇彩采纳,获得10
7秒前
cx完成签到 ,获得积分10
7秒前
kai9712应助Ting采纳,获得20
8秒前
噜lu发布了新的文献求助10
8秒前
无花果应助wch采纳,获得10
9秒前
Hello应助冷静的慕青采纳,获得10
9秒前
善学以致用应助薯条采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
肉肉发布了新的文献求助10
10秒前
YUE发布了新的文献求助10
11秒前
Judy发布了新的文献求助10
12秒前
刘晚柠完成签到,获得积分10
12秒前
panda完成签到,获得积分10
12秒前
13秒前
13秒前
小二郎应助ee采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082