摘要
Verarbeitungsbedingte Nebenströme fallen in großen Mengen als Abfallprodukte der obstund gemüseverarbeitenden Industrie an. Diese enthalten mitunter ernährungsphysiologisch positiv bewertete Bestandteile der menschlichen Ernährung. Dazu zählen u.a. Ballaststoffe und bestimmte sekundäre Pflanzenmetaboliten. Die pflanzliche Zellwand stellt dabei die Hauptballaststoffquelle dar, und abhängig von der Zusammensetzung der Komponenten weisen diese gesundheitsfördernde Eigenschaften auf. Neben einer möglichen Beeinflussung der ernährungsphysiologischen Eigenschaften kann das Einbringen von Polysacchariden aus Nebenströmen in Lebensmitteln deren technofunktionellen Eigenschaften, z. B. die Wasserbindung, beeinflussen. Niedermolekulare Inhaltsstoffe wie (poly)phenolische Verbindungen oder Carotinoide können als Antioxidantien fungieren und damit u. a. die Lipidoxidation verlangsamen. Extrusion kann die technofunktionellen Eigenschaften von Nebenströmen verändern und ggf. eine zielgerichtete Funktionalisierung ermöglichen. Eine ausführliche Charakterisierung der chemischen Zusammensetzung der Inhaltsstoffe von Nebenströmen vor und nach Extrusion kann dazu beitragen, den Einfluss dieser Prozessierung auf die strukturelle Zusammensetzung zu verstehen. Die wesentlichen Inhaltsstoffe von Nebenströmen wurden teilweise bereits grundlegend charakterisiert, jedoch sind Informationen über ihre Feinstrukturen, insbesondere der Polysaccharide, oft lückenhaft. Weiter fehlen detaillierte Informationen zu den Veränderungen der Strukturen unter dem Einfluss der Extrusion bei unterschiedlichen Extrusionsbedingungen. In der vorliegenden Arbeit wurden Apfeltrester (unbehandelt und enzymatisch behandelt), Kartoffelpülpe sowie Karottentrester hinsichtlich der Ballaststoffgehalte und der chemischen Zusammensetzung und der Strukturen der Ballaststoffpolysaccharide vor und nach Extrusion charakterisiert. Die Ballaststoffe wurden dafür in unlösliche, lösliche und niedermolekularlösliche Fraktionen unterteilt und hinsichtlich ihrer Monosaccharidzusammensetzung nach verschiedenen Säurehydrolysen analysiert. Zudem wurden die Polysaccharidbindungstypen (Methylierungsanalyse), die detaillierten Arabinan‐ und Galactanstrukturen nach enzymatischen Teilabbau, der Veresterungsgrad der polymergebundenen Galacturonsäure sowie die Cellulosekristallinität bestimmt. Weiter wurde die Fermentierbarkeit der Ballaststoffpolysaccharide der Nebenströme vor und nach Extrusion in einem vereinfachten in vitro Modell simuliert und abgeschätzt. Neben den Ballaststoffpolysacchariden lag ein weiterer Fokus auf der Analyse der jeweils charakteristischen sekundären Pflanzenmetaboliten. Da es sich bei Extrusion um einen thermomechanischen Prozess handelt, ist die potentielle Bildung von hitzeinduzierten Kontaminanten ein entscheidender Faktor für den möglichen Einsatz solcher Produkte in Lebensmitteln. Acrylamid und Furfuralderivate wurden dabei exemplarisch analysiert. Die Charakterisierung der ausgewählten Nebenströme zeigte, dass deren Zellwände in Übereinstimmung mit der Taxonomie der Pflanzen überwiegend aus Cellulose sowie Pektinen und variablen, aber generell geringeren Anteilen verschiedener Hemicellulosen bestehen. Hemicellulosen waren dabei überwiegend in Form von Xyloglucanen in den Apfeltrestern vertreten, während in der Kartoffelpülpe und dem Karottentrester Hemicellulosen eine stark untergeordnete Rolle spielen. Die Pektine der Nebenströme wiesen unterschiedliche Anteile an Homogalacturonan und Rhamnogalacturonan Typ I mit verschiedenen neutralen Seitenketten auf. Die dominierenden Seitenketten des Typ I Rhamnogalacturonans waren in den Apfeltrestern Arabinane, im Karottentrester Arabinane und Galactane zu ähnlichen Anteilen sowie Galactane in der Kartoffelpülpe. Als weitere polymere/oligomere NichtPolysaccharid‐Komponenten konnten in den Apfeltrestern kurzkettige zellwandassoziierte Proanthocyanidine nachgewiesen werden. Neben der unterschiedlichen Zellwandzusammensetzung unterschieden sich die Materialien auch in weiteren Inhaltsstoffen. So waren die Gehalte an freien Mono‐ und Disacchariden in den Apfeltrestern vergleichsweise hoch, während die Kartoffelpülpe einen Reststärkegehalt von ca. 30 g/100 g Trockenmasse enthielt. Charakteristische sekundäre Pflanzenmetabolite wie (poly)phenolische Verbindungen waren in den Apfeltrestern und der Kartoffelpülpe (Chlorogensäure) enthalten, daneben waren Carotinoide im Karottentrester vertreten. Durch eine thermomechanische Behandlung mittels Extrusion veränderte sich die Zusammensetzung der Ballaststoffpolysaccharide abhängig von den gewählten Bedingungen. Neben einer Zunahme der Löslichkeit der Ballaststoffpolysaccharide zeigten sich die Pektine als labil unter den angewendeten Bedingungen. Insbesondere wurden Strukturmodifikationen in den neutralen Seitenketten des Typ I Rhamnogalacturonans aller Nebenströme nachgewiesen. Bevorzugt wurden bei den Apfeltrestern hochverzweigte Arabinane abgebaut, während bei der Kartoffelpülpe die Galactane anfällig für Abbaureaktionen waren. Im Karottentrester waren nach Extrusion sowohl unlösliche Arabinane als auch unlösliche Galactane reduziert. Dagegen sind Polysaccharide wie Cellulose und Hemicellulosen weitgehend stabil unter dem Einfluss der Extrusion. Entkopplung der thermischen von der mechanischen Beanspruchung zeigte, dass die Veränderungen überwiegend thermischen Ursprungs sind, der mechanische Einfluss jedoch auch eine Rolle spielen kann. Trotz Veränderungen in den Polysaccharidprofilen der Nebenströme und einer Erhöhung der Löslichkeit der Ballaststoffpolysaccharide, sind die Auswirkungen durch Extrusion auf die Fermentierbarkeit dieser in vitro gering. Der fermentative Abbau der Ballaststoffpolysaccharide, welche mit Driselase durchgeführt wurde, sowie die im Zuge der Fermentation freigesetzten Mono‐ und Oligosaccharide wurden durch Extrusion der Nebenströme nicht grundlegend verändert. Extrusionsbedingte Modifikationen zeigten sich bei den Proanthocyanidinen, bei welchen der Polymerisationsgrad tendenziell abnahm. Hitzeinduzierte Kontaminanten wurden durch Extrusion in Abhängigkeit von den Ausgangsmaterialien nur in geringem Ausmaß gebildet. Freie Mono‐ und Disaccharide sowie Asparagin können dabei Ausgangssubstanzen für die Bildung von Acrylamid sein. Bei Kartoffelpülpe, welche natürlicherweise hohe Gehalte an Asparagin enthält, oder bei dem enzymatisch behandelten Apfeltrester mit hohen Gehalten an freien Mono‐ und Disacchariden wurde Acrylamid unter maximaler thermischer Belastung von 133,5 °C bzw. 128,1 °C mit 71 μg/kg Trockenmasse bzw. 76 μg/kg Trockenmasse nachgewiesen. Auch für 5‐ Hydroxymethylfurfural konnte ein Höchstgehalt von 62,3 mg/kg Trockenmasse für den enzymatisch behandelten Apfeltrester ermittelt werden. Weiter können natürlicherweise vorkommende Substanzen wie Glykoalkaloide in Kartoffeln durch eine mögliche Lockerung der Zellstrukturen besser extrahierbar werden, was zu höheren Gehalten durch Extrusion im Vergleich zum Rohmaterial führte (188,2‐245,9 mg Gesamtglykoalkaloidgehalt/100 g TM). Des Weiteren wurde der Einfluss der Extrusion auch auf sekundäre Pflanzeninhaltsstoffe wie (Poly)Phenole oder Carotinoide deutlich, da deren Anteile reduziert um bis zu 50 % reduziert wurden. Die Charakterisierung der Zellwandzusammensetzung sowie der niedermolekularen Inhaltsstoffe vor und nach thermomechanischer Behandlung mittels Extrusion zeigte, dass die Veränderungen vom eingesetzten Nebenstrom und von den gewählten Extrusionsbedingungen abhängig sind. Die zellwandassoziierten Veränderungen beschränken sich zwar größtenteils auf die neutralen Seitenketten des Typ I Rhamnogalacturonans aus Pektinen, sind aber unterschiedlichen Ausmaßes. Unerwünschte Prozesskontaminanten wie Acrylamid werden nur in geringem Ausmaß gebildet und sollten einer extrusionsbasierten Funktionalisierung von Nebenströmen nicht im Weg stehen, da daneben auch potentiell ernährungsphysiologisch positive sekundäre Pflanzenmetaboliten weitestgehend erhalten bleiben sowie die Fermentierbarkeit der Ballaststoffpolysaccharide bzw. ‐oligosaccharide in vitro kaum verändert wird.