增采样
图像分辨率
计算机科学
时间分辨率
稳健性(进化)
算法
人工智能
物理
光学
图像(数学)
生物化学
基因
化学
作者
Fergus Shone,Nishant Ravikumar,Toni Lassila,Michael MacRaild,Yongxing Wang,Zeike A. Taylor,Peter K. Jimack,Erica Dall’Armellina,Alejandro F. Frangi
标识
DOI:10.1007/978-3-031-34048-2_39
摘要
4D-flow magnetic resonance imaging (MRI) provides non-invasive blood flow reconstructions in the heart. However, low spatio-temporal resolution and significant noise artefacts hamper the accuracy of derived haemodynamic quantities. We propose a physics-informed super-resolution approach to address these shortcomings and uncover hidden solution fields. We demonstrate the feasibility of the model through two synthetic studies generated using computational fluid dynamics. The Navier-Stokes equations and no-slip boundary condition on the endocardium are weakly enforced, regularising model predictions to accommodate network training without high-resolution labels. We show robustness to each type of data degradation, achieving normalised velocity RMSE values of under 16% at extreme spatial and temporal upsampling rates of 16 $$\times $$ and 10 $$\times $$ respectively, using a signal-to-noise ratio of 7.
科研通智能强力驱动
Strongly Powered by AbleSci AI