Identifying underlying influential factors in information diffusion process on social media platform: A hybrid approach of data mining and time series regression

微博 社会化媒体 事件(粒子物理) 计算机科学 扩散 数据科学 万维网 量子力学 热力学 物理
作者
Zhen Yan,Xuemei Zhou,Jie Ren,Qiuyun Zhang,Rong Du
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (5): 103438-103438 被引量:10
标识
DOI:10.1016/j.ipm.2023.103438
摘要

As the prevailing online communications paradigm, social media platforms are considered to be the fastest medium for sharing and diffusing information. But what influences the spread of information through these platforms? The content of the post? The sentiments contained? Or the characteristics of user's behavior? To explore which factors promote the spread of information through social media, we developed a data analytics method that combines data mining with time series regression. We then applied this analytical framework to the L group Double 11 false advertising scandal, which blew up on the Sina microblog – a public hot trend that attracted the attention of millions of people. Our analysis reveals how three factors – user activity, emotional changes, and public attention – interact and the role they play in the spread of information. Among these factors, sentiment polarity and reposting are found to be the two main drivers of information diffusion. Emotional contagion accelerates the spread of information when the event first breaks (known as the accumulation period), while reposting does more to spread information once the event has gained some traction (the diffusion period). Surprisingly, the topic of public concentration in the event has a significant impact on the spread of the event in the accumulation period, but the effect shades away during the diffusion and convergence periods, i.e., the farther relations among topics are tied, the less public interest is abating on the event – a finding that is supported by cognitive load theory. However, although public attention shows little influence in the diffusion process, it does reveal how consumers shift their attention to different subtopics over time. Overall, our analysis sheds some light on how online events evolve and 'go viral'. Notably, this study not only explores how underlying factors dynamically influence the information diffusion process, but also offers insights into how to manage information diffusion processes in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秋完成签到,获得积分10
刚刚
cms完成签到,获得积分10
刚刚
周周完成签到 ,获得积分10
刚刚
1秒前
minirou完成签到,获得积分10
1秒前
1秒前
繁荣的向秋完成签到,获得积分10
1秒前
mori26完成签到,获得积分10
2秒前
南风知我意完成签到,获得积分10
2秒前
Leo完成签到 ,获得积分10
2秒前
3秒前
3秒前
Singularity应助兔农糖采纳,获得10
4秒前
丰盛的煎饼应助兔农糖采纳,获得10
4秒前
4秒前
酷波er应助兔农糖采纳,获得10
4秒前
4秒前
5秒前
5秒前
燕子发布了新的文献求助10
5秒前
6秒前
Coco椰发布了新的文献求助10
6秒前
曲奇饼干发布了新的文献求助10
6秒前
7秒前
8秒前
江语晨完成签到,获得积分20
8秒前
乐观安蕾完成签到,获得积分10
10秒前
11秒前
小笼包完成签到,获得积分10
13秒前
小玲仔发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
水稻热死啦完成签到,获得积分10
16秒前
优秀跳跳糖完成签到,获得积分10
16秒前
调研昵称发布了新的文献求助10
16秒前
可爱的函函应助...采纳,获得10
16秒前
李爱国应助Dr.Sun采纳,获得10
17秒前
Coco椰完成签到,获得积分10
17秒前
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157055
求助须知:如何正确求助?哪些是违规求助? 2808405
关于积分的说明 7877451
捐赠科研通 2466898
什么是DOI,文献DOI怎么找? 1313069
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919