Identifying underlying influential factors in information diffusion process on social media platform: A hybrid approach of data mining and time series regression

微博 社会化媒体 事件(粒子物理) 计算机科学 扩散 数据科学 万维网 量子力学 热力学 物理
作者
Zhen Yan,Xuemei Zhou,Jie Ren,Qiuyun Zhang,Rong Du
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (5): 103438-103438 被引量:10
标识
DOI:10.1016/j.ipm.2023.103438
摘要

As the prevailing online communications paradigm, social media platforms are considered to be the fastest medium for sharing and diffusing information. But what influences the spread of information through these platforms? The content of the post? The sentiments contained? Or the characteristics of user's behavior? To explore which factors promote the spread of information through social media, we developed a data analytics method that combines data mining with time series regression. We then applied this analytical framework to the L group Double 11 false advertising scandal, which blew up on the Sina microblog – a public hot trend that attracted the attention of millions of people. Our analysis reveals how three factors – user activity, emotional changes, and public attention – interact and the role they play in the spread of information. Among these factors, sentiment polarity and reposting are found to be the two main drivers of information diffusion. Emotional contagion accelerates the spread of information when the event first breaks (known as the accumulation period), while reposting does more to spread information once the event has gained some traction (the diffusion period). Surprisingly, the topic of public concentration in the event has a significant impact on the spread of the event in the accumulation period, but the effect shades away during the diffusion and convergence periods, i.e., the farther relations among topics are tied, the less public interest is abating on the event – a finding that is supported by cognitive load theory. However, although public attention shows little influence in the diffusion process, it does reveal how consumers shift their attention to different subtopics over time. Overall, our analysis sheds some light on how online events evolve and 'go viral'. Notably, this study not only explores how underlying factors dynamically influence the information diffusion process, but also offers insights into how to manage information diffusion processes in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
黄震洋完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助田立高采纳,获得10
8秒前
柒柒捌捌完成签到,获得积分10
8秒前
xulei完成签到,获得积分20
8秒前
8秒前
今后应助宁静致远采纳,获得10
8秒前
10秒前
所所应助专注的乐松采纳,获得10
10秒前
Kevin完成签到,获得积分10
12秒前
领导范儿应助Mandarine采纳,获得30
13秒前
睡个大觉完成签到,获得积分10
13秒前
科目三应助不倦采纳,获得10
13秒前
海海发布了新的文献求助10
14秒前
hehe发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助morena采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
英俊剑封关注了科研通微信公众号
19秒前
自由保温杯应助qing采纳,获得10
20秒前
22秒前
23秒前
ding应助自由焦虑采纳,获得10
24秒前
24秒前
纯真的风发布了新的文献求助10
25秒前
浮游应助牛乃唐采纳,获得10
26秒前
田立高完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
科研通AI6应助nydwwq采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578694
求助须知:如何正确求助?哪些是违规求助? 4663478
关于积分的说明 14746840
捐赠科研通 4604380
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496508
关于科研通互助平台的介绍 1465823