Identifying underlying influential factors in information diffusion process on social media platform: A hybrid approach of data mining and time series regression

微博 社会化媒体 事件(粒子物理) 计算机科学 扩散 数据科学 万维网 量子力学 热力学 物理
作者
Zhen Yan,Xuemei Zhou,Jie Ren,Qiuyun Zhang,Rong Du
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (5): 103438-103438 被引量:10
标识
DOI:10.1016/j.ipm.2023.103438
摘要

As the prevailing online communications paradigm, social media platforms are considered to be the fastest medium for sharing and diffusing information. But what influences the spread of information through these platforms? The content of the post? The sentiments contained? Or the characteristics of user's behavior? To explore which factors promote the spread of information through social media, we developed a data analytics method that combines data mining with time series regression. We then applied this analytical framework to the L group Double 11 false advertising scandal, which blew up on the Sina microblog – a public hot trend that attracted the attention of millions of people. Our analysis reveals how three factors – user activity, emotional changes, and public attention – interact and the role they play in the spread of information. Among these factors, sentiment polarity and reposting are found to be the two main drivers of information diffusion. Emotional contagion accelerates the spread of information when the event first breaks (known as the accumulation period), while reposting does more to spread information once the event has gained some traction (the diffusion period). Surprisingly, the topic of public concentration in the event has a significant impact on the spread of the event in the accumulation period, but the effect shades away during the diffusion and convergence periods, i.e., the farther relations among topics are tied, the less public interest is abating on the event – a finding that is supported by cognitive load theory. However, although public attention shows little influence in the diffusion process, it does reveal how consumers shift their attention to different subtopics over time. Overall, our analysis sheds some light on how online events evolve and 'go viral'. Notably, this study not only explores how underlying factors dynamically influence the information diffusion process, but also offers insights into how to manage information diffusion processes in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
积极松完成签到 ,获得积分10
2秒前
一又二分之一完成签到,获得积分10
3秒前
xieyangyu完成签到 ,获得积分10
3秒前
ARESCI发布了新的文献求助10
4秒前
lyp发布了新的文献求助10
5秒前
淡淡尔烟发布了新的文献求助10
7秒前
Gloyxtg发布了新的文献求助10
7秒前
思源应助王月帆采纳,获得10
8秒前
99668完成签到,获得积分10
9秒前
小马甲应助周美言采纳,获得10
9秒前
可爱的函函应助以鹿之路采纳,获得10
9秒前
Roxanne发布了新的文献求助20
9秒前
9秒前
Jasper应助星星采纳,获得10
10秒前
10秒前
kikeva发布了新的文献求助10
13秒前
情怀应助彩彩采纳,获得10
14秒前
大模型应助Heyley采纳,获得10
14秒前
科研通AI6应助hh采纳,获得10
14秒前
研友_VZG7GZ应助叶涛采纳,获得10
15秒前
海棠发布了新的文献求助10
16秒前
云上完成签到,获得积分10
17秒前
18秒前
曦cherish完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
啊哦发布了新的文献求助10
23秒前
娇气的冬菱完成签到,获得积分10
24秒前
思源应助谢谢谢采纳,获得10
24秒前
折枝念晚宁完成签到,获得积分10
24秒前
faydmy完成签到 ,获得积分10
25秒前
kikeva完成签到,获得积分10
27秒前
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950