清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrative gene expression analysis for the diagnosis of Parkinson’s disease using machine learning and explainable AI

人工智能 Lasso(编程语言) 特征选择 支持向量机 机器学习 计算机科学 医学诊断 逻辑回归 疾病 弹性网正则化 回归 集合(抽象数据类型) 表达式(计算机科学) 模式识别(心理学) 医学 统计 病理 数学 程序设计语言 万维网
作者
Nikita Bhandari,Rahee Walambe,Ketan Kotecha,Mehul Kaliya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107140-107140 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.107140
摘要

Parkinson's disease (PD) is a progressive neurodegenerative disorder. Various symptoms and diagnostic tests are used in combination for the diagnosis of PD; however, accurate diagnosis at early stages is difficult. Blood-based markers can support physicians in the early diagnosis and treatment of PD. In this study, we used Machine Learning (ML) based methods for the diagnosis of PD by integrating gene expression data from different sources and applying explainable artificial intelligence (XAI) techniques to find the significant set of gene features contributing to diagnosis. We utilized the Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge regression for the feature selection process. We utilized state-of-the-art ML techniques for the classification of PD cases and healthy controls. Logistic regression and Support Vector Machine showed the highest diagnostic accuracy. SHapley Additive exPlanations (SHAP) based global interpretable model-agnostic XAI method was utilized for the interpretation of the Support Vector Machine model. A set of significant biomarkers that contributed to the diagnosis of PD were identified. Some of these genes are associated with other neurodegenerative diseases. Our results suggest that the utilization of XAI can be useful in making early therapeutic decisions for the treatment of PD. The integration of datasets from different sources made this model robust. We believe that this research article will be of interest to clinicians as well as computational biologists in translational research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp完成签到 ,获得积分10
13秒前
FashionBoy应助王颖超采纳,获得10
15秒前
二三完成签到 ,获得积分10
23秒前
26秒前
王颖超发布了新的文献求助10
33秒前
欣喜的香菱完成签到 ,获得积分10
34秒前
cheng完成签到,获得积分10
37秒前
科研通AI6.1应助内向的绿采纳,获得10
40秒前
灿烂而孤独的八戒完成签到 ,获得积分0
41秒前
随心所欲完成签到 ,获得积分10
54秒前
领导范儿应助嘻嘻哈哈采纳,获得10
1分钟前
1分钟前
ceeray23发布了新的文献求助50
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
万能图书馆应助嘻嘻哈哈采纳,获得10
2分钟前
2分钟前
Mrmao0213发布了新的文献求助10
2分钟前
2分钟前
gwbk完成签到,获得积分10
2分钟前
夜休2024完成签到 ,获得积分10
2分钟前
完美世界应助Mrmao0213采纳,获得10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
2分钟前
joysa完成签到,获得积分10
2分钟前
ph完成签到 ,获得积分10
3分钟前
zhzhzh完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小二郎应助内向的绿采纳,获得10
3分钟前
poki完成签到 ,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773041
求助须知:如何正确求助?哪些是违规求助? 5605571
关于积分的说明 15430331
捐赠科研通 4905756
什么是DOI,文献DOI怎么找? 2639694
邀请新用户注册赠送积分活动 1587610
关于科研通互助平台的介绍 1542574