Automatic Detection of Pancreatic Lesions and Main Pancreatic Duct Dilatation on Portal Venous CT Scans Using Deep Learning

医学 胰管 放射科 接收机工作特性 病变 胰腺 置信区间 肠系膜上静脉 曲线下面积 核医学 门静脉 内科学 外科
作者
Clément Abi Nader,Rebeca Vétil,Laura Kate Wood,Marc-Michel Rohé,Alexandre Bône,Hedvig Karteszi,Marie‐Pierre Vullierme
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
被引量:9
标识
DOI:10.1097/rli.0000000000000992
摘要

Objectives This study proposes and evaluates a deep learning method to detect pancreatic neoplasms and to identify main pancreatic duct (MPD) dilatation on portal venous computed tomography scans. Materials and Methods A total of 2890 portal venous computed tomography scans from 9 institutions were acquired, among which 2185 had a pancreatic neoplasm and 705 were healthy controls. Each scan was reviewed by one in a group of 9 radiologists. Physicians contoured the pancreas, pancreatic lesions if present, and the MPD if visible. They also assessed tumor type and MPD dilatation. Data were split into a training and independent testing set of 2134 and 756 cases, respectively. A method to detect pancreatic lesions and MPD dilatation was built in 3 steps. First, a segmentation network was trained in a 5-fold cross-validation manner. Second, outputs of this network were postprocessed to extract imaging features: a normalized lesion risk, the predicted lesion diameter, and the MPD diameter in the head, body, and tail of the pancreas. Third, 2 logistic regression models were calibrated to predict lesion presence and MPD dilatation, respectively. Performance was assessed on the independent test cohort using receiver operating characteristic analysis. The method was also evaluated on subgroups defined based on lesion types and characteristics. Results The area under the curve of the model detecting lesion presence in a patient was 0.98 (95% confidence interval [CI], 0.97–0.99). A sensitivity of 0.94 (469 of 493; 95% CI, 0.92–0.97) was reported. Similar values were obtained in patients with small (less than 2 cm) and isodense lesions with a sensitivity of 0.94 (115 of 123; 95% CI, 0.87–0.98) and 0.95 (53 of 56, 95% CI, 0.87–1.0), respectively. The model sensitivity was also comparable across lesion types with values of 0.94 (95% CI, 0.91–0.97), 1.0 (95% CI, 0.98–1.0), 0.96 (95% CI, 0.97–1.0) for pancreatic ductal adenocarcinoma, neuroendocrine tumor, and intraductal papillary neoplasm, respectively. Regarding MPD dilatation detection, the model had an area under the curve of 0.97 (95% CI, 0.96–0.98). Conclusions The proposed approach showed high quantitative performance to identify patients with pancreatic neoplasms and to detect MPD dilatation on an independent test cohort. Performance was robust across subgroups of patients with different lesion characteristics and types. Results confirmed the interest to combine a direct lesion detection approach with secondary features such as the MPD diameter, thus indicating a promising avenue for the detection of pancreatic cancer at early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LY0430完成签到 ,获得积分10
刚刚
2秒前
3秒前
Wtony完成签到 ,获得积分10
5秒前
serendipity完成签到 ,获得积分10
6秒前
unique完成签到,获得积分10
8秒前
Elytra完成签到,获得积分10
9秒前
jeffrey完成签到,获得积分0
10秒前
李李李完成签到,获得积分10
11秒前
WWL完成签到 ,获得积分10
15秒前
暖暖的禾日完成签到,获得积分10
16秒前
小怪兽完成签到,获得积分10
16秒前
ilk666完成签到,获得积分10
17秒前
元问晴完成签到,获得积分10
18秒前
18秒前
负责以山完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
斗转星移完成签到 ,获得积分10
22秒前
路人完成签到,获得积分0
22秒前
芳菲依旧应助ggp采纳,获得50
24秒前
lili完成签到,获得积分10
25秒前
传奇3应助wave8013采纳,获得10
27秒前
29秒前
zhangshenrong完成签到 ,获得积分10
29秒前
ewind完成签到 ,获得积分10
30秒前
村上春树的摩的完成签到 ,获得积分10
33秒前
危机的夏兰完成签到,获得积分10
33秒前
jz完成签到,获得积分10
34秒前
RandyChen完成签到,获得积分10
34秒前
wweiweili完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
宋艳芳完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
眯眯眼的谷冬完成签到 ,获得积分10
39秒前
冬烜完成签到 ,获得积分10
42秒前
吃吃货完成签到 ,获得积分10
43秒前
11完成签到,获得积分10
45秒前
高挑的金毛完成签到 ,获得积分10
46秒前
负数完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986