Future Challenges for Designing Industry‐Relevant Bioinspired Materials

宝藏 主流 质量(理念) 自然(考古学) 天然材料 过程(计算) 计算机科学 纳米技术 持续性 生化工程 选择(遗传算法) 仿生材料 表征(材料科学) 仿生学 风险分析(工程) 管理科学 工程伦理学 数据科学 工程类 人工智能 生态学 业务 政治学 认识论 材料科学 法学 生物 历史 古生物学 哲学 考古 高分子科学 操作系统
作者
Warren Rosario,Nidhi Chauhan
标识
DOI:10.1002/9781394174928.ch14
摘要

Ever since its genesis, life has successfully been able to spread throughout the planet and has survived even in the harshest of conditions. It has done so through the process of "Evolution by natural selection." This ability of nature to perfect designs and materials over time has caught the eye of scientists all over the world and led to the development of materials and systems inspired from nature. This concept is called bioinspiration whose core tenet is the belief that, the solution to practically all our issues can be found in nature. A cursory examination of prior civilizations reveals that we have long known the benefits of biologically inspired materials, despite being uninformed of their specific workings and mechanisms. Now, with the help of advanced characterization and analysis tools, we are finally able to crack open nature's treasure chest and use this unprecedented wealth of knowledge to engineer materials that can tackle problems that have tormented us. Using nanotechnology, scientists have developed bioinspired materials that are far superior to the traditional materials in use today. Superior properties, non-toxic nature, and other qualities, however, are insufficient in today's capitalist environment to make these materials mainstream. These advanced bioinspired materials must overcome additional obstacles before they can be embraced by the general public. These obstacles can be broadly divided into two categories: a) difficulty in developing feasible synthesis methods; and b) challenges in ensuring the quality, stability, and sustainability of these materials. We will examine the applications of various bioinspired materials in this chapter, as well as the different hurdles that they must overcome in the coming future to be viable alternatives to existing materials. Nature is an ideal scientist who has spent millions of years developing and refining biological materials and systems with lots of time and resources, all of which are luxuries we as humans with finite lifespans cannot afford. We must be exceedingly judicious with our time and resources, concentrating our efforts on producing materials that can meet our requirements without sacrificing too much. Bioinspired materials have a bright future ahead of them, and once all of the production and material issues are resolved, they can greatly help humanity. Nature is a never-ending source of information and inspiration that will inspire us to come up with wonderful ideas and promote innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
zzr真真97完成签到,获得积分10
3秒前
Crisp完成签到,获得积分10
4秒前
CodeCraft应助xlong采纳,获得10
5秒前
HaidongZhang发布了新的文献求助10
5秒前
桐桐应助wangfeng007采纳,获得10
5秒前
852应助Chen采纳,获得10
6秒前
lili完成签到,获得积分10
6秒前
陈艳林发布了新的文献求助10
6秒前
情怀应助耳机分你一只诺采纳,获得10
7秒前
orixero应助ronin采纳,获得10
7秒前
Lee完成签到,获得积分10
7秒前
亵渎完成签到,获得积分10
7秒前
Xu完成签到,获得积分10
7秒前
琪凯定理完成签到,获得积分10
8秒前
浅蓝色关注了科研通微信公众号
9秒前
9秒前
Xdz完成签到 ,获得积分10
10秒前
李健应助无花无酒采纳,获得10
11秒前
晶晶完成签到,获得积分10
11秒前
konoraha完成签到,获得积分20
11秒前
11秒前
哆面体完成签到,获得积分10
12秒前
12秒前
陶醉觅夏发布了新的文献求助200
12秒前
fang完成签到,获得积分10
13秒前
xiaozhou123完成签到,获得积分10
13秒前
晴天的枫児完成签到,获得积分10
13秒前
Zn应助Erin采纳,获得10
13秒前
xsh完成签到,获得积分10
14秒前
kma完成签到,获得积分10
14秒前
无花果应助陈艳林采纳,获得10
15秒前
CipherSage应助helio采纳,获得10
16秒前
科研通AI5应助Selenge采纳,获得10
16秒前
闪闪凝冬完成签到,获得积分10
16秒前
hala安胖胖完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546764
求助须知:如何正确求助?哪些是违规求助? 3123808
关于积分的说明 9356884
捐赠科研通 2822427
什么是DOI,文献DOI怎么找? 1551441
邀请新用户注册赠送积分活动 723417
科研通“疑难数据库(出版商)”最低求助积分说明 713756