已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Protecting User Privacy in Remote Conversational Systems: A Privacy-Preserving framework based on text sanitization

计算机科学 信息隐私 语言模型 任务(项目管理) 计算机安全 互联网隐私 人工智能 经济 管理
作者
Zhigang Kan,Linbo Qiao,Hao Yu,Liwen Peng,Yifu Gao,Dongsheng Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2306.08223
摘要

Large Language Models (LLMs) are gaining increasing attention due to their exceptional performance across numerous tasks. As a result, the general public utilize them as an influential tool for boosting their productivity while natural language processing researchers endeavor to employ them in solving existing or new research problems. Unfortunately, individuals can only access such powerful AIs through APIs, which ultimately leads to the transmission of raw data to the models' providers and increases the possibility of privacy data leakage. Current privacy-preserving methods for cloud-deployed language models aim to protect privacy information in the pre-training dataset or during the model training phase. However, they do not meet the specific challenges presented by the remote access approach of new large-scale language models. This paper introduces a novel task, "User Privacy Protection for Dialogue Models," which aims to safeguard sensitive user information from any possible disclosure while conversing with chatbots. We also present an evaluation scheme for this task, which covers evaluation metrics for privacy protection, data availability, and resistance to simulation attacks. Moreover, we propose the first framework for this task, namely privacy protection through text sanitization. Before sending the input to remote large models, it filters out the sensitive information, using several rounds of text sanitization based on privacy types that users define. Upon receiving responses from the larger model, our framework automatically restores privacy to ensure that the conversation goes smoothly, without intervention from the privacy filter. Experiments based on real-world datasets demonstrate the efficacy of our privacy-preserving approach against eavesdropping from potential attackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆紫发布了新的文献求助10
1秒前
5秒前
史前巨怪完成签到,获得积分10
7秒前
庄默羽发布了新的文献求助10
10秒前
sandra完成签到 ,获得积分10
10秒前
x跳完成签到,获得积分10
14秒前
白蓝完成签到 ,获得积分10
16秒前
20秒前
20秒前
22秒前
哈哈Hank发布了新的文献求助10
27秒前
庄默羽发布了新的文献求助10
27秒前
28秒前
斐然诗完成签到 ,获得积分10
31秒前
ZJ完成签到,获得积分10
31秒前
bkagyin应助哈哈嘻嘻采纳,获得10
32秒前
嗯嗯嗯完成签到 ,获得积分20
32秒前
rid4iuclous2完成签到 ,获得积分10
35秒前
科研狗发布了新的文献求助20
35秒前
莫名乐乐完成签到,获得积分10
37秒前
Jackylee完成签到,获得积分10
38秒前
斯文败类应助TTT0530采纳,获得10
38秒前
1111完成签到 ,获得积分10
38秒前
允胖胖完成签到 ,获得积分10
39秒前
1111关注了科研通微信公众号
43秒前
45秒前
楼醉山完成签到,获得积分10
47秒前
科研通AI2S应助郜雨寒采纳,获得10
47秒前
庄默羽发布了新的文献求助10
50秒前
李加一完成签到 ,获得积分10
50秒前
情怀应助sjxx采纳,获得10
51秒前
53秒前
nadia完成签到,获得积分10
1分钟前
1分钟前
微笑的冥幽完成签到,获得积分20
1分钟前
1分钟前
Sanqainli发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790323
关于积分的说明 7794903
捐赠科研通 2446762
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141