MAGAN: Multiattention Generative Adversarial Network for Infrared and Visible Image Fusion

人工智能 计算机科学 特征提取 突出 图像融合 发电机(电路理论) 计算机视觉 模式识别(心理学) 特征(语言学) 融合 图像(数学) 功率(物理) 语言学 量子力学 物理 哲学
作者
Shuying Huang,Zixiang Song,Yong Yang,Weiguo Wan,Xiangkai Kong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:5
标识
DOI:10.1109/tim.2023.3282300
摘要

Deep learning has been widely used in infrared and visible image fusion owing to its strong feature extraction and generalization capabilities. However, it is difficult to directly extract specific image features from different modal images. Therefore, according to the characteristics of infrared and visible images, this paper proposes a multi-attention generative adversarial network (MAGAN) for infrared and visible image fusion, which is composed of a multi- attention generator and two multi-attention discriminators. The multi-attention generator gradually realizes the extraction and fusion of image features by constructing two modules: a triple-path feature pre-fusion module (TFPM) and a feature emphasis fusion module (FEFM). The two multi-attention discriminators are constructed to ensure that the fused images retain the salient targets and the texture information from the source images. In MAGAN, an intensity attention and a texture attention are designed to extract the specific features of the source images to retain more intensity and texture information in the fused image. In addition, a saliency target intensity loss is defined to ensure that the fused images obtain more accurate salient information from infrared images. Experimental results on two public datasets show that the proposed MAGAN outperforms some state-of-the-art models in terms of visual effects and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感板栗完成签到,获得积分10
2秒前
大个应助Ren采纳,获得10
2秒前
zjw发布了新的文献求助10
2秒前
宋璐宏发布了新的文献求助10
2秒前
SciGPT应助hufan2441采纳,获得10
5秒前
7秒前
7秒前
JamesPei应助810采纳,获得30
7秒前
janie发布了新的文献求助10
10秒前
乱武发布了新的文献求助10
10秒前
安静的思远完成签到,获得积分20
10秒前
少爷发布了新的文献求助10
10秒前
深情安青应助QYPANG采纳,获得10
10秒前
11秒前
13秒前
16秒前
wpx发布了新的文献求助10
16秒前
16秒前
FashionBoy应助kk采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
zzz完成签到,获得积分20
20秒前
平淡汽车发布了新的文献求助10
20秒前
22秒前
hufan2441发布了新的文献求助10
22秒前
Ren发布了新的文献求助10
23秒前
23秒前
23秒前
淘宝叮咚发布了新的文献求助10
24秒前
24秒前
孙燕应助sc30采纳,获得20
25秒前
25秒前
26秒前
荔枝发布了新的文献求助10
26秒前
26秒前
26秒前
Ki_Ayasato发布了新的文献求助10
26秒前
zzzz完成签到,获得积分20
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176