过电位
材料科学
掺杂剂
催化作用
碳纤维
氧气
微型多孔材料
电池(电)
化学工程
Atom(片上系统)
密度泛函理论
兴奋剂
纳米技术
复合材料
物理化学
计算化学
电化学
电极
光电子学
有机化学
化学
复合数
嵌入式系统
工程类
功率(物理)
物理
量子力学
计算机科学
作者
Mengxia Shen,Jun Liu,Ji Li,Chao Duan,Chuanyin Xiong,Wei Zhao,Lei Dai,Qianyu Wang,Hao Yang,Yonghao Ni
标识
DOI:10.1016/j.ensm.2023.102790
摘要
Nitrogen-doped carbon supported metal single-atom catalysts (M-N-C SACs), especially Fe-N-C SACs appear as very promising catalysts for oxygen reduction reaction (ORR). However, precisely modulating of the Fe-Nx configuration and geometric microenvironment in Fe-N-C SACs to achieve the highest level of catalytic activity remains grand challenges. Herein, we describe a N-rich heterocycle regulated supramolecular coordination self-assembly strategy to fabricate Fe single atoms anchored on N-enriched porous submicron carbon spheres (FeSA/N-PSCS), with ultra-high N-dopant content (14.81 at.%) for facilitating the formation of atomically dispersed Fe-N4. Density functional theory calculations validate that N-doping at the periphery of the Fe-N4 active sites optimizes the adsorption of oxygen-containing intermediates and significantly reduces the ORR overpotential. Benefitting from the localized N-enriched atomic configuration, highly microporous, and regular submicron-spherical structure, FeSA/N-PSCS exhibit enhanced ORR performance. More importantly, FeSA/N-PSCS catalyzed Zn-air battery (ZAB) outperforms Pt/C+RuO2-based ZAB in the aspects of maximum power density, specific capacity and cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI