已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions

计算机科学 人工智能 嵌入 字错误率 特征工程 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 语音识别 基因 生物 生物化学
作者
Gancheng Zhu,Yongchang Fan,Fĕi Li,Annebella Tsz Ho Choi,Zhenyu Tan,Yiruo Cheng,Kewei Li,Siyang Wang,Changfan Luo,Hongmei Li,Gongyou Zhang,Zhaomin Yao,Yaqi Zhang,L. Q. Huang,Fengfeng Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120439-120439 被引量:3
标识
DOI:10.1016/j.eswa.2023.120439
摘要

A genome carries many functional genomic signals and regions (GSRs), which play a vital role in orchestrating the complex biological processes in eukaryotic organisms. Precise recognition of the GSRs within a genomic sequence is the first step to an understanding of genomic organization and gene regulation. Previous studies have used machine learning or deep learning algorithms to identify GSRs based on hand-crafted features, that frequently fail to capture complex patterns within the GSRs. The one-hot encoding or word2vec embedding algorithms used in several deep learning-based studies have the potential to overcome the weakness of the human-designed features, but they may fail to capture contextual and positional information. The present study proposes a general-purpose end-to-end framework for GSR prediction (GSRNet), that integrates DNABERT embedding, adversarial training, BiGRU, and multi-scale CNN to eliminate human involvement in feature engineering. The GSRNet is evaluated with polyadenylation signals (PAS) and translation initiation sites (TIS) prediction tasks. The comparative experiments show that the proposed GSRNet outperforms the state-of-the-art methods reported in previous studies, with a drop in the error rate by 1.08% and 1.50% for human PAS and TIS GSR, respectively. Our model reduces the relative error rate up to 8.73% and 32.97%, respectively. The improved detections of the two types of GSRs (PAS and TIS) across four organisms confirmed the effectiveness and robustness of the proposed GSRNet. The source code and the data are freely available at http://www.healthinformaticslab.org/supp/resources.php.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢绍博发布了新的文献求助10
刚刚
牢囧完成签到 ,获得积分10
3秒前
3秒前
隐形曼青应助Drwenlu采纳,获得10
3秒前
顾矜应助Drwenlu采纳,获得10
3秒前
3秒前
ABJ完成签到 ,获得积分10
4秒前
吾日三省吾身完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助斯文明杰采纳,获得10
5秒前
秋天完成签到,获得积分10
5秒前
woleaisa发布了新的文献求助30
6秒前
斯文败类应助cndxh采纳,获得10
6秒前
liu完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
浓浓完成签到 ,获得积分10
11秒前
辽宁科技大学完成签到 ,获得积分10
14秒前
xxfsx应助研友_LMBPXn采纳,获得10
15秒前
18秒前
Thrain完成签到,获得积分10
18秒前
19秒前
19秒前
gxmu6322完成签到,获得积分10
22秒前
22秒前
cndxh发布了新的文献求助10
25秒前
xxfsx应助研友_LMBPXn采纳,获得10
25秒前
斯文明杰发布了新的文献求助10
26秒前
30秒前
Emma完成签到 ,获得积分10
30秒前
31秒前
情怀应助cndxh采纳,获得10
32秒前
Zylan完成签到,获得积分10
33秒前
周周周发布了新的文献求助10
34秒前
吴小燕发布了新的文献求助10
36秒前
隐形大白完成签到,获得积分10
36秒前
没时间解释了完成签到 ,获得积分10
38秒前
youlinn发布了新的文献求助10
38秒前
悠悠完成签到 ,获得积分10
38秒前
sweet完成签到 ,获得积分10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309