GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions

计算机科学 人工智能 嵌入 字错误率 特征工程 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 语音识别 基因 生物 生物化学
作者
Gancheng Zhu,Yongchang Fan,Fĕi Li,Annebella Tsz Ho Choi,Zhenyu Tan,Yiruo Cheng,Kewei Li,Siyang Wang,Changfan Luo,Hongmei Li,Gongyou Zhang,Zhaomin Yao,Yaqi Zhang,L. Q. Huang,Fengfeng Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120439-120439 被引量:3
标识
DOI:10.1016/j.eswa.2023.120439
摘要

A genome carries many functional genomic signals and regions (GSRs), which play a vital role in orchestrating the complex biological processes in eukaryotic organisms. Precise recognition of the GSRs within a genomic sequence is the first step to an understanding of genomic organization and gene regulation. Previous studies have used machine learning or deep learning algorithms to identify GSRs based on hand-crafted features, that frequently fail to capture complex patterns within the GSRs. The one-hot encoding or word2vec embedding algorithms used in several deep learning-based studies have the potential to overcome the weakness of the human-designed features, but they may fail to capture contextual and positional information. The present study proposes a general-purpose end-to-end framework for GSR prediction (GSRNet), that integrates DNABERT embedding, adversarial training, BiGRU, and multi-scale CNN to eliminate human involvement in feature engineering. The GSRNet is evaluated with polyadenylation signals (PAS) and translation initiation sites (TIS) prediction tasks. The comparative experiments show that the proposed GSRNet outperforms the state-of-the-art methods reported in previous studies, with a drop in the error rate by 1.08% and 1.50% for human PAS and TIS GSR, respectively. Our model reduces the relative error rate up to 8.73% and 32.97%, respectively. The improved detections of the two types of GSRs (PAS and TIS) across four organisms confirmed the effectiveness and robustness of the proposed GSRNet. The source code and the data are freely available at http://www.healthinformaticslab.org/supp/resources.php.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ygg完成签到,获得积分10
刚刚
1秒前
1秒前
alan132完成签到 ,获得积分10
2秒前
4秒前
5秒前
6秒前
离心力完成签到,获得积分10
6秒前
勤恳的向日葵完成签到,获得积分10
6秒前
8秒前
8秒前
韩凡发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
bkagyin应助Olivia采纳,获得10
11秒前
慕青应助Chambray采纳,获得10
12秒前
司念者你发布了新的文献求助10
12秒前
13秒前
13秒前
01231009yrjz发布了新的文献求助10
13秒前
sunshine发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
罗小马完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
17秒前
17秒前
626发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
lolo发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432