GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions

计算机科学 人工智能 嵌入 字错误率 特征工程 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 语音识别 基因 生物 生物化学
作者
Gancheng Zhu,Yongchang Fan,Fĕi Li,Annebella Tsz Ho Choi,Zhenyu Tan,Yiruo Cheng,Kewei Li,Siyang Wang,Changfan Luo,Hongmei Li,Gongyou Zhang,Zhaomin Yao,Yaqi Zhang,L. Q. Huang,Fengfeng Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120439-120439 被引量:3
标识
DOI:10.1016/j.eswa.2023.120439
摘要

A genome carries many functional genomic signals and regions (GSRs), which play a vital role in orchestrating the complex biological processes in eukaryotic organisms. Precise recognition of the GSRs within a genomic sequence is the first step to an understanding of genomic organization and gene regulation. Previous studies have used machine learning or deep learning algorithms to identify GSRs based on hand-crafted features, that frequently fail to capture complex patterns within the GSRs. The one-hot encoding or word2vec embedding algorithms used in several deep learning-based studies have the potential to overcome the weakness of the human-designed features, but they may fail to capture contextual and positional information. The present study proposes a general-purpose end-to-end framework for GSR prediction (GSRNet), that integrates DNABERT embedding, adversarial training, BiGRU, and multi-scale CNN to eliminate human involvement in feature engineering. The GSRNet is evaluated with polyadenylation signals (PAS) and translation initiation sites (TIS) prediction tasks. The comparative experiments show that the proposed GSRNet outperforms the state-of-the-art methods reported in previous studies, with a drop in the error rate by 1.08% and 1.50% for human PAS and TIS GSR, respectively. Our model reduces the relative error rate up to 8.73% and 32.97%, respectively. The improved detections of the two types of GSRs (PAS and TIS) across four organisms confirmed the effectiveness and robustness of the proposed GSRNet. The source code and the data are freely available at http://www.healthinformaticslab.org/supp/resources.php.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
blueblue发布了新的文献求助10
2秒前
Drpei完成签到,获得积分20
3秒前
云栈出谷发布了新的文献求助10
3秒前
mm完成签到,获得积分10
4秒前
4秒前
李菲完成签到,获得积分20
4秒前
5秒前
wzy13647744027关注了科研通微信公众号
5秒前
Hello应助冷酷路灯采纳,获得10
6秒前
lynn应助fifteen采纳,获得10
6秒前
YJY发布了新的文献求助10
7秒前
ABS发布了新的文献求助10
7秒前
甜甜玫瑰应助苟玉琴采纳,获得10
11秒前
干净傲霜完成签到 ,获得积分10
11秒前
12秒前
8R60d8应助Sink采纳,获得10
14秒前
给一完成签到,获得积分20
14秒前
16秒前
16秒前
潘道士完成签到 ,获得积分10
17秒前
17秒前
贰鸟应助科研通管家采纳,获得20
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
mori应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
研友_VZG7GZ应助懦弱的如蓉采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821