亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions

计算机科学 人工智能 嵌入 字错误率 特征工程 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 语音识别 基因 生物 生物化学
作者
Gancheng Zhu,Yongchang Fan,Fĕi Li,Annebella Tsz Ho Choi,Zhenyu Tan,Yiruo Cheng,Kewei Li,Siyang Wang,Changfan Luo,Hongmei Li,Gongyou Zhang,Zhaomin Yao,Yaqi Zhang,L. Q. Huang,Fengfeng Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120439-120439 被引量:3
标识
DOI:10.1016/j.eswa.2023.120439
摘要

A genome carries many functional genomic signals and regions (GSRs), which play a vital role in orchestrating the complex biological processes in eukaryotic organisms. Precise recognition of the GSRs within a genomic sequence is the first step to an understanding of genomic organization and gene regulation. Previous studies have used machine learning or deep learning algorithms to identify GSRs based on hand-crafted features, that frequently fail to capture complex patterns within the GSRs. The one-hot encoding or word2vec embedding algorithms used in several deep learning-based studies have the potential to overcome the weakness of the human-designed features, but they may fail to capture contextual and positional information. The present study proposes a general-purpose end-to-end framework for GSR prediction (GSRNet), that integrates DNABERT embedding, adversarial training, BiGRU, and multi-scale CNN to eliminate human involvement in feature engineering. The GSRNet is evaluated with polyadenylation signals (PAS) and translation initiation sites (TIS) prediction tasks. The comparative experiments show that the proposed GSRNet outperforms the state-of-the-art methods reported in previous studies, with a drop in the error rate by 1.08% and 1.50% for human PAS and TIS GSR, respectively. Our model reduces the relative error rate up to 8.73% and 32.97%, respectively. The improved detections of the two types of GSRs (PAS and TIS) across four organisms confirmed the effectiveness and robustness of the proposed GSRNet. The source code and the data are freely available at http://www.healthinformaticslab.org/supp/resources.php.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8WbP4Z完成签到,获得积分20
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Mufreh应助科研通管家采纳,获得30
8秒前
Timelapse应助科研通管家采纳,获得10
8秒前
8秒前
10秒前
湫栗发布了新的文献求助10
13秒前
薛枏发布了新的文献求助10
13秒前
sunryaes完成签到 ,获得积分10
16秒前
薛枏完成签到,获得积分10
22秒前
科研通AI6.1应助jyy采纳,获得10
38秒前
40秒前
Reed发布了新的文献求助10
44秒前
45秒前
从来都不会放弃zr完成签到,获得积分10
49秒前
53秒前
57秒前
科研小黑发布了新的文献求助10
58秒前
1分钟前
隐形曼青应助Reed采纳,获得10
1分钟前
科研小黑完成签到,获得积分10
1分钟前
neao完成签到 ,获得积分10
1分钟前
科研通AI6.1应助jyy采纳,获得10
1分钟前
xiaolei001应助Fluoxtine采纳,获得10
1分钟前
1分钟前
MchemG举报自由访烟求助涉嫌违规
1分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
duan完成签到 ,获得积分10
2分钟前
科研通AI2S应助yunshui采纳,获得10
2分钟前
森森森完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yunshui发布了新的文献求助10
2分钟前
dadabad完成签到 ,获得积分10
2分钟前
小小虾完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491