Deep Learning Synthetic Strain: Quantitative Assessment of Regional Myocardial Wall Motion at MRI

医学 稳态自由进动成像 冠状动脉疾病 接收机工作特性 心脏成像 放射科 心脏病学 内科学 磁共振成像 核医学
作者
Evan Masutani,Rahul S. Chandrupatla,Shuo Wang,Chiara Zocchi,Lewis D. Hahn,Michael Horowitz,Kathleen Jacobs,Seth Kligerman,Francesca Raimondi,Amit R. Patel,Albert Hsiao
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3)
标识
DOI:10.1148/ryct.220202
摘要

Purpose To assess the feasibility of a newly developed algorithm, called deep learning synthetic strain (DLSS), to infer myocardial velocity from cine steady-state free precession (SSFP) images and detect wall motion abnormalities in patients with ischemic heart disease. Materials and Methods In this retrospective study, DLSS was developed by using a data set of 223 cardiac MRI examinations including cine SSFP images and four-dimensional flow velocity data (November 2017 to May 2021). To establish normal ranges, segmental strain was measured in 40 individuals (mean age, 41 years ± 17 [SD]; 30 men) without cardiac disease. Then, DLSS performance in the detection of wall motion abnormalities was assessed in a separate group of patients with coronary artery disease, and these findings were compared with consensus results of four independent cardiothoracic radiologists (ground truth). Algorithm performance was evaluated by using receiver operating characteristic curve analysis. Results Median peak segmental radial strain in individuals with normal cardiac MRI findings was 38% (IQR: 30%–48%). Among patients with ischemic heart disease (846 segments in 53 patients; mean age, 61 years ± 12; 41 men), the Cohen κ among four cardiothoracic readers for detecting wall motion abnormalities was 0.60–0.78. DLSS achieved an area under the receiver operating characteristic curve of 0.90. Using a fixed 30% threshold for abnormal peak radial strain, the algorithm achieved a sensitivity, specificity, and accuracy of 86%, 85%, and 86%, respectively. Conclusion The deep learning algorithm had comparable performance with subspecialty radiologists in inferring myocardial velocity from cine SSFP images and identifying myocardial wall motion abnormalities at rest in patients with ischemic heart disease. Keywords: Neural Networks, Cardiac, MR Imaging, Ischemia/Infarction Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hanchangcun发布了新的文献求助10
3秒前
Vincy完成签到,获得积分10
3秒前
3秒前
4秒前
wongcheng完成签到,获得积分10
5秒前
天天快乐应助dada采纳,获得10
5秒前
5秒前
6秒前
丰富的寒蕾完成签到,获得积分10
6秒前
ppp发布了新的文献求助10
6秒前
隐形曼青应助Ff20001115采纳,获得10
7秒前
8秒前
8秒前
wtsow完成签到,获得积分0
8秒前
上课跷二郎腿i完成签到 ,获得积分10
8秒前
8秒前
12发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
duming发布了新的文献求助10
11秒前
hanchangcun完成签到,获得积分10
12秒前
搜集达人应助codwest采纳,获得10
12秒前
13秒前
14秒前
14秒前
xiaomeng完成签到 ,获得积分10
15秒前
pl就是你发布了新的文献求助10
15秒前
16秒前
16秒前
咩了个咩完成签到,获得积分10
16秒前
17秒前
18秒前
小木头人完成签到,获得积分10
18秒前
19秒前
20秒前
田小姐发布了新的文献求助10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得80
20秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422236
求助须知:如何正确求助?哪些是违规求助? 3022621
关于积分的说明 8901656
捐赠科研通 2710004
什么是DOI,文献DOI怎么找? 1486265
科研通“疑难数据库(出版商)”最低求助积分说明 686979
邀请新用户注册赠送积分活动 682186