Multi-modal cross-attention network for Alzheimer’s disease diagnosis with multi-modality data

模态(人机交互) 神经影像学 计算机科学 模式 人工智能 情态动词 正电子发射断层摄影术 痴呆 磁共振成像 医学影像学 机器学习 自编码 模式识别(心理学) 深度学习 医学 放射科 疾病 神经科学 心理学 病理 社会学 化学 高分子化学 社会科学
作者
Jin Zhang,Xiaohai He,Luping Liu,Qingyan Cai,Honggang Chen,Linbo Qing
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107050-107050 被引量:43
标识
DOI:10.1016/j.compbiomed.2023.107050
摘要

Alzheimer's disease (AD) is a neurodegenerative disorder, the most common cause of dementia, so the accurate diagnosis of AD and its prodromal stage mild cognitive impairment (MCI) is significant. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis. Many existing multi-modal models based on deep learning simply concatenate each modality's features despite substantial differences in representation spaces. In this paper, we propose a novel multi-modal cross-attention AD diagnosis (MCAD) framework to learn the interaction between modalities for better playing their complementary roles for AD diagnosis with multi-modal data including structural magnetic resonance imaging (sMRI), fluorodeoxyglucose-positron emission tomography (FDG-PET) and cerebrospinal fluid (CSF) biomarkers. Specifically, the imaging and non-imaging representations are learned by the image encoder based on cascaded dilated convolutions and CSF encoder, respectively. Then, a multi-modal interaction module is introduced, which takes advantage of cross-modal attention to integrate imaging and non-imaging information and reinforce relationships between these modalities. Moreover, an extensive objective function is designed to reduce the discrepancy between modalities for effectively fusing the features of multi-modal data, which could further improve the diagnosis performance. We evaluate the effectiveness of our proposed method on the ADNI dataset, and the extensive experiments demonstrate that our MCAD achieves superior performance for multiple AD-related classification tasks, compared to several competing methods. Also, we investigate the importance of cross-attention and the contribution of each modality to the diagnostics performance. The experimental results demonstrate that combining multi-modality data via cross-attention is helpful for accurate AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的定帮应助白白的鱼采纳,获得10
刚刚
YY发布了新的文献求助30
刚刚
隐形曼青应助Billy采纳,获得10
刚刚
流水应助tuya采纳,获得40
1秒前
1秒前
1秒前
小马甲应助yimi采纳,获得10
2秒前
MANGMANG完成签到,获得积分10
2秒前
顾矜应助灵巧的熊猫采纳,获得10
2秒前
ding应助Leisure_Lee采纳,获得10
2秒前
王俊美发布了新的文献求助10
2秒前
湘华完成签到,获得积分10
2秒前
HY发布了新的文献求助10
3秒前
科研小白发布了新的文献求助10
3秒前
LL完成签到,获得积分10
5秒前
ED应助cckk采纳,获得10
5秒前
5秒前
ddddd关注了科研通微信公众号
6秒前
继往开来应助快乐映萱采纳,获得10
6秒前
彩云追月完成签到 ,获得积分10
6秒前
7秒前
LONG发布了新的文献求助10
7秒前
Akim应助湘华采纳,获得10
8秒前
阿琳发布了新的文献求助10
8秒前
快乐滑板应助tjusasa采纳,获得10
9秒前
无情向薇应助王鹏飞采纳,获得10
9秒前
9秒前
10秒前
10秒前
细腻的荟发布了新的文献求助10
10秒前
10秒前
褚忆灵发布了新的文献求助10
10秒前
12秒前
12秒前
高安之关注了科研通微信公众号
12秒前
科研123发布了新的文献求助10
12秒前
70岁老太在线科研完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
sx完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198