Comprehensive analysis of the heterogeneous computing performance of DNNs under typical frameworks on cloud and edge computing platforms

计算机科学 云计算 推论 边缘计算 帕斯卡(单位) 工作站 人工神经网络 GSM演进的增强数据速率 计算机工程 软件部署 数据挖掘 人工智能 操作系统 程序设计语言
作者
Feiyu Zhao,Sheng Wang,Ping Lin,Yongming Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120475-120475
标识
DOI:10.1016/j.eswa.2023.120475
摘要

In this paper, nearly 40 commonly used deep neural network(DNN) models are selected, and their cross-platform and cross-inference frameworks are deeply analysed. The main metrics of accuracy, the total number of model parameters, the computational complexity, the accuracy density, the inference time, the memory consumption and other related parameters are used to measure their performance. The heterogeneous computing experiment is implemented on both the Google Colab cloud computing platform and the Jetson Nano embedded edge computing platform. The obtained performance is compared with that of two previous computing platforms: a workstation equipped with an NVIDIA Titan X Pascal and an embedded system based on an NVIDIA Jetson TX1 board. In addition, on the Jetson Nano embedded edge computing platform, different inference frameworks are investigated to evaluate the inference efficiency of the DNN models. Regression models are established to characterize the variation in the computing performance of different DNN classification algorithms so that the inference results of unknown models can be estimated. ANOVA methods are proposed to quantify the differences between models. The experimental results have important guiding significance for the better selection, deployment and application of DNN models in practice. Codes are available at this https URL https://github.com/Foreverzfy/Model-Test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Zzzzzzzzzzz采纳,获得10
刚刚
1秒前
2秒前
巫马秋寒应助笑点低可乐采纳,获得10
2秒前
xuex1完成签到,获得积分10
2秒前
情怀应助阳光的雁山采纳,获得10
4秒前
斯文败类应助jy采纳,获得10
4秒前
4秒前
日月轮回发布了新的文献求助10
5秒前
36456657应助木香采纳,获得10
6秒前
无花果应助ns采纳,获得30
6秒前
刘铭晨完成签到,获得积分10
6秒前
7秒前
YY发布了新的文献求助10
7秒前
Rrr发布了新的文献求助10
8秒前
学术蠕虫发布了新的文献求助10
8秒前
8秒前
miumiuka完成签到,获得积分10
9秒前
个性的薯片应助lyt采纳,获得20
11秒前
sweetbearm应助寒涛先生采纳,获得10
12秒前
wanci应助YY采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
HC完成签到 ,获得积分10
16秒前
姚姚的赵赵完成签到,获得积分10
16秒前
JamesPei应助大豪子采纳,获得30
17秒前
jy发布了新的文献求助10
17秒前
17秒前
陆靖易发布了新的文献求助10
17秒前
LQW完成签到,获得积分20
18秒前
19秒前
plant完成签到,获得积分10
19秒前
lyt完成签到,获得积分10
19秒前
20秒前
21秒前
敏感网络完成签到,获得积分20
22秒前
kh453发布了新的文献求助10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808