Frequency stability prediction of renewable energy penetrated power systems using CoAtNet and SHAP values

计算机科学 理论(学习稳定性) 卷积(计算机科学) 电力系统 特征选择 过程(计算) 计算 人工智能 深度学习 功率(物理) 机器学习 算法 人工神经网络 量子力学 操作系统 物理
作者
Peili Liu,Song Han,Rong Na
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106403-106403 被引量:2
标识
DOI:10.1016/j.engappai.2023.106403
摘要

As the complexity of power systems increases, traditional model-driven methods for online frequency stability prediction (FSP) encounter constraints in both accuracy and efficiency. To enhance the accuracy and efficiency of FSP, an data-driven method using CoAtNet and SHAP values is proposed. By leveraging the combination of convolution and attention mechanisms, CoAtNet addresses the limitation of traditional deep learning approaches that may not be able to extract data features comprehensively. Moreover, selecting all features as input into a deep-learning model may cause a substantial computation burden. It is thus impractical for CoAtNet to perform FSP of large-scale power systems. For this problem, this paper develops a SHAP values-based feature selection method to select the effective features as input. This process greatly reduces the numerical complexity, maintaining a high prediction performance. Additionally, the marginally stable situation of the system frequency is ignored by most researchers. A frequency security index to identify marginally stable situations is thus employed to generate the data labels, which are classed as “absolute security”, “relative security”, and “insecurity”. Finally, verified by the comparison simulation, the proposed model outperforms other models with accuracies of 98.80% on the modified IEEE 39-bus system and 99.04% on the modified ACTIVSg500 system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助xiaobai采纳,获得10
刚刚
不配.应助专注的问筠采纳,获得10
2秒前
吕耀炜完成签到,获得积分10
2秒前
琉璃苣应助Iwylm采纳,获得10
2秒前
cach完成签到,获得积分10
3秒前
moon完成签到,获得积分10
4秒前
4秒前
扣子发布了新的文献求助10
6秒前
6秒前
浅尝离白应助真实的逍遥采纳,获得50
7秒前
8秒前
9秒前
hdh完成签到,获得积分10
9秒前
YJL发布了新的文献求助10
9秒前
LYB吕发布了新的文献求助10
10秒前
11秒前
11秒前
DD发布了新的文献求助10
11秒前
11秒前
lxh完成签到,获得积分10
12秒前
迎风笑落红完成签到,获得积分20
14秒前
花生辣鱼发布了新的文献求助10
14秒前
hhllhh啊完成签到 ,获得积分10
15秒前
111发布了新的文献求助10
15秒前
16秒前
16秒前
nanonamo发布了新的文献求助10
16秒前
印染完成签到,获得积分10
16秒前
17秒前
18秒前
桐桐应助故意的曼荷采纳,获得10
18秒前
19秒前
20秒前
20秒前
情怀应助科研通管家采纳,获得30
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
一石二鸟应助科研通管家采纳,获得10
21秒前
所所应助12334采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得20
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046