Fuzzy Attention Neural Network to Tackle Discontinuity in Airway Segmentation

分割 计算机科学 稳健性(进化) 人工智能 模糊逻辑 模式识别(心理学) 人工神经网络 特征(语言学) 语言学 生物化学 基因 哲学 化学
作者
Nan Yang,Javier Del Ser,Zeyu Tang,Peng Tang,Xiaodan Xing,Yingying Fang,Francisco Herrera,Witold Pedrycz,Simon Walsh,Guang Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7391-7404 被引量:20
标识
DOI:10.1109/tnnls.2023.3269223
摘要

Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed methods to automatically segment airways from computerized tomography (CT) images. However, some small-sized airway branches (e.g., bronchus and terminal bronchioles) significantly aggravate the difficulty of automatic segmentation by machine learning models. In particular, the variance of voxel values and the severe data imbalance in airway branches make the computational module prone to discontinuous and false-negative predictions, especially for cohorts with different lung diseases. The attention mechanism has shown the capacity to segment complex structures, while fuzzy logic can reduce the uncertainty in feature representations. Therefore, the integration of deep attention networks and fuzzy theory, given by the fuzzy attention layer, should be an escalated solution for better generalization and robustness. This article presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network (FANN) and a comprehensive loss function to enhance the spatial continuity of airway segmentation. The deep fuzzy set is formulated by a set of voxels in the feature map and a learnable Gaussian membership function. Different from the existing attention mechanism, the proposed channel-specific fuzzy attention addresses the issue of heterogeneous features in different channels. Furthermore, a novel evaluation metric is proposed to assess both the continuity and completeness of airway structures. The efficiency, generalization, and robustness of the proposed method have been proved by training on normal lung disease while testing on datasets of lung cancer, COVID-19, and pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过于傻逼完成签到,获得积分10
1秒前
依旧发布了新的文献求助10
1秒前
2秒前
顺利的冬瓜完成签到,获得积分10
2秒前
热心一一发布了新的文献求助10
2秒前
2秒前
hyominhsu发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助勤奋的天蓝采纳,获得10
4秒前
liao完成签到 ,获得积分10
5秒前
5秒前
CKX完成签到,获得积分10
6秒前
7秒前
冷傲山彤发布了新的文献求助10
7秒前
傲娇梦旋发布了新的文献求助10
7秒前
8秒前
严美娜完成签到,获得积分10
8秒前
9秒前
zjky6r完成签到,获得积分20
10秒前
10秒前
Murphy_H给Murphy_H的求助进行了留言
11秒前
求知小莹发布了新的文献求助10
12秒前
wanci应助烂漫念文采纳,获得10
12秒前
susu完成签到,获得积分10
13秒前
13秒前
13秒前
Lz555完成签到 ,获得积分10
14秒前
FashionBoy应助傲娇梦旋采纳,获得10
16秒前
细心的柏柳应助CY采纳,获得10
16秒前
17秒前
似水流年发布了新的文献求助10
17秒前
欢喜的幼荷给香菜大姐的求助进行了留言
19秒前
19秒前
20秒前
晨昏完成签到,获得积分10
21秒前
小木易完成签到,获得积分10
22秒前
上官若男应助miksa采纳,获得10
22秒前
bkagyin应助若水采纳,获得10
23秒前
水穷云起完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882