可发现性
桥接(联网)
计算机科学
成交(房地产)
图书馆分类
透视图(图形)
万维网
图书馆学
社会学
人工智能
政治学
法学
计算机网络
出处
期刊:Library Trends
[Johns Hopkins University Press]
日期:2023-05-21
卷期号:71 (1): 132-143
被引量:1
标识
DOI:10.1353/lib.2023.0008
摘要
This article argues that if libraries are to take leadership in conversations about the ethics and application of machine learning (ML) to cultural materials, they must move beyond the "perpetual future tense" of most library ML proposals and experiments, narrowing the gap separating promises that ML will enhance discoverability for library materials and the library systems through which most users encounter those materials. Even as ML methods have grown more powerful, nuanced, and sophisticated, ambitious hopes that ML might help better identify and describe vast library collections have been largely unmet, at least from the perspective of library patrons, researchers, and students. To address this gap, the article argues that libraries and ML researchers should work together to develop iterative, experimental, and even speculative interfaces that allow users to explore collections through ML-derived patterns that can enhance library data while educating users about ML processes, decisions, and biases.
科研通智能强力驱动
Strongly Powered by AbleSci AI