已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI challenges conventional knowledge management: light the way for reframing SECI model and Ba theory

认知重构 知识管理 知识创造 计算机科学 业务 心理学 营销 社会心理学 下游(制造业)
作者
Wenyao Zhang,Wenbo He,Tuğrul Daim,Haydar Yalçın
出处
期刊:Journal of Knowledge Management [Emerald Publishing Limited]
标识
DOI:10.1108/jkm-02-2024-0203
摘要

Purpose Nonaka’s SECI (Socialization-Externalization-Combination-Internalization) model and Ba theory have been dominant frameworks in knowledge management (KM) for decades, but less attention is given to their revolutionary changes in the era of human-intelligence interaction. Thus, this study aims to explore the profound impact of artificial intelligence (AI) on conventional SECI model and Ba theory. Design/methodology/approach This study integrates systematic literature review (LDA) and abductive reasoning as research design to analyze the existing literature (12,075 results from Web of Science Core Collection) to find research gap and potential clues for proceeding our study and future research direction. Findings This study reconstructs and reinterprets the AI-based SECI model and AI-enabled Ba. Specifically, it reimagines knowledge forms and functions, establishing a new paradigm for the AI-based SECI model through the dimensions of socialization, externalization, combination and internalization. Additionally, it examines knowledge-driven pathways via perceptual, cognitive and behavioral intelligence. It further develops AI-enabled Ba to conduct an in-depth analysis of knowledge sharing and creation, aligning these processes with an updated Ba framework. Notably, it replaces the traditional Dialoguing Ba with Interpretation Ba and the Systemizing Ba with Decision-making Ba. It introduces the concept of “AI-based knowledge force” and proposes a method for measuring its influence in the rising knowledge spiral. It also conceptualizes the basis and nature of human-intelligence symbiosis, emphasizing the shift from a human-centric to a human-intelligence relationship. The theory of affordances is employed to explore the relational dynamics in terms of the existence, perception, actualization and effects of affordances. Meanwhile, the doctrine of the mean is used to illuminate the nature of the relationship across technological and content dimensions. Practical implications The findings inspire managers and decision-makers to adopt various AI-based strategies to accelerate knowledge transformation, thereby enhancing the overall AI-based knowledge force in human decision-making. These strategies can help rationally manage and innovate knowledge to boost knowledge reserves, as well as promote the development of AI technologies related to knowledge creation. Originality/value This study leverages AI tool to reconstruct the conventional SECI model and Ba theory by establishing the AI-based SECI model and AI-enabled Ba, revealing the complete knowledge conversion process and its underlying mechanisms. It broadens the application of the theory of affordances and the doctrine of the mean in the knowledge creation literature, highlighting the relational basis and nature of human-intelligence symbiosis among humans, AI tools and the knowledge environment. As a result, our findings emphasize the need for synergistic collaboration between artificial agents and humans in KM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的灵枫完成签到 ,获得积分10
刚刚
77992完成签到 ,获得积分10
1秒前
zho完成签到,获得积分10
3秒前
3秒前
XL完成签到 ,获得积分10
4秒前
毛豆应助罐装采纳,获得10
5秒前
YIFGU完成签到 ,获得积分10
5秒前
liway完成签到 ,获得积分10
5秒前
Donut完成签到,获得积分10
5秒前
香蕉觅云应助林钰浩采纳,获得10
6秒前
bkagyin应助九日采纳,获得10
6秒前
小张完成签到 ,获得积分10
6秒前
cc2713206完成签到,获得积分0
7秒前
阿豪要发文章完成签到 ,获得积分10
7秒前
chenlc971125完成签到 ,获得积分10
7秒前
清爽的诗云完成签到 ,获得积分10
9秒前
黄黄黄完成签到,获得积分10
9秒前
Mr.Sui完成签到,获得积分10
10秒前
柯语雪完成签到 ,获得积分10
10秒前
胡图图啦啦完成签到 ,获得积分10
11秒前
超声科教授完成签到,获得积分10
12秒前
小白狗完成签到,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
霸气的保温杯完成签到 ,获得积分10
15秒前
务实的焦完成签到 ,获得积分10
15秒前
庞mou完成签到 ,获得积分10
15秒前
金灶沐完成签到 ,获得积分10
15秒前
15秒前
紧张的似狮完成签到 ,获得积分10
17秒前
葡萄味的果茶完成签到 ,获得积分10
18秒前
伊莎贝儿完成签到 ,获得积分10
19秒前
西格完成签到 ,获得积分10
20秒前
顾矜应助九日采纳,获得10
21秒前
鹤川发布了新的文献求助10
21秒前
雷家完成签到,获得积分10
23秒前
笨笨芯发布了新的文献求助10
24秒前
yan完成签到 ,获得积分10
25秒前
老孟完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729041
求助须知:如何正确求助?哪些是违规求助? 3274033
关于积分的说明 9984388
捐赠科研通 2989299
什么是DOI,文献DOI怎么找? 1640381
邀请新用户注册赠送积分活动 779201
科研通“疑难数据库(出版商)”最低求助积分说明 748049