S2 -Transformer for Mask-Aware Hyperspectral Image Reconstruction

高光谱成像 人工智能 迭代重建 计算机视觉 计算机科学 图像处理 模式识别(心理学) 图像(数学)
作者
Jiamian Wang,Kunpeng Li,Yulun Zhang,Xin Yuan,Zhiqiang Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3543842
摘要

Snapshot compressive imaging (SCI) surges as a novel way of capturing hyperspectral images. It operates an optical encoder to compress the 3D data into a 2D measurement and adopts a software decoder for the signal reconstruction. Recently, a representative SCI set-up of coded aperture snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance. However, dominant spatial and spectral attention designs show limitations in hyperspectral modeling. The spatial attention values describe the inter-pixel correlation but overlook the across-spectra variation within each pixel. The spectral attention size is unscalable to the token spatial size and thus bottlenecks information allocation. Besides, CASSI entangles the spatial and spectral information into a 2D measurement, placing a barrier for information disentanglement and modeling. In addition, CASSI blocks the light with a physical binary mask, yielding the masked data loss. To tackle above challenges, we propose a spatial-spectral (S 2 -) Transformer implemented by a paralleled attention design and a mask-aware learning strategy. Firstly, we systematically explore pros and cons of different spatial (-spectral) attention designs, based on which we find performing both attentions in parallel well disentangles and models the blended information. Secondly, the masked pixels induce higher prediction difficulty and should be treated differently from unmasked ones. We adaptively prioritize the loss penalty attributing to the mask structure by referring to the mask-encoded prediction as an uncertainty estimator. We theoretically discuss the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrate that on average, the results of the proposed method are superior over the state-of-the-art methods. We empirically visualize and reason the behaviour of spatial and spectral attentions, and comprehensively examine the impact of the mask-aware learning, both of which advances the physics-driven deep network design for the reconstruction with CASSI. Code is available at https://github.com/Jiamian-Wang/S2-transformer-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路的夏之完成签到,获得积分10
1秒前
连夏之发布了新的文献求助10
1秒前
1秒前
酷波er应助俊秀的白曼采纳,获得10
4秒前
许许发布了新的文献求助10
6秒前
研友_VZG7GZ应助hey采纳,获得10
6秒前
ssnope发布了新的文献求助10
7秒前
ZJH完成签到,获得积分10
9秒前
gjww发布了新的文献求助100
10秒前
cc发布了新的文献求助10
10秒前
11秒前
12秒前
小二郎应助Kim-SJTU采纳,获得10
13秒前
俊秀的白曼完成签到,获得积分10
13秒前
111发布了新的文献求助10
14秒前
16秒前
英俊延恶发布了新的文献求助10
17秒前
思源应助kyyy采纳,获得10
18秒前
18秒前
JiangHb完成签到,获得积分10
18秒前
hey发布了新的文献求助10
21秒前
21秒前
令狐凌波完成签到 ,获得积分10
23秒前
今后应助飘逸的路灯采纳,获得10
23秒前
满意的翎完成签到,获得积分10
24秒前
执着的妙海完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
阔达白筠发布了新的文献求助10
29秒前
wyz完成签到,获得积分10
29秒前
哈哈发布了新的文献求助10
29秒前
WY完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
32秒前
归尘应助djbj2022采纳,获得10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086