IodoFinder: Machine Learning-Guided Recognition of Iodinated Chemicals in Nontargeted LC-MS/MS Analysis

化学 色谱法 计算机科学
作者
Tingting Zhao,Qiming Shen,Xing‐Fang Li,Tao Huan
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.est.4c12698
摘要

Iodinated disinfection byproducts (I-DBPs) pose significant health concerns due to their high toxicity. Current approaches to recognize unknown I-DBPs in mass spectrometry (MS) analysis rely on negative ionization mode, in which the characteristic I– fragment can be observed in tandem mass spectra (MS/MS). Still, many I-DBPs ionize exclusively in positive ionization mode, where the I– fragment is absent. To address this gap, this work developed a machine learning-based strategy to recognize iodinated compounds (I-compounds) from their MS/MS in both electrospray positive (ESI+) and negative ionization (ESI−) modes. Investigating over 6000 MS/MS spectra of 381 I-compounds, we first identified five characteristic I-containing neutral losses and one diagnostic I– fragment in ESI+ and ESI– modes, respectively. We then trained Random Forest models and integrated them into IodoFinder, a Python program, to streamline the recognition of I-compounds from raw LC-MS data. IodoFinder accurately recognized over 96% of the 161 I-compound standards in both ionization modes. In its application to DBP mixtures, IodoFinder discovered 19 I-DBPs with annotated structures and an additional 17 with assigned formulas, including 12 novel and 3 confirmed I-DBPs. We envision that IodoFinder will advance the identification of both known and unknown I-compounds in exposome studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
half-ora发布了新的文献求助10
3秒前
Peyton Why完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
affff完成签到 ,获得积分10
9秒前
九月发布了新的文献求助10
10秒前
华仔应助现代水蓉采纳,获得10
10秒前
青云天发布了新的文献求助10
10秒前
10秒前
Moislad发布了新的文献求助10
10秒前
12秒前
12秒前
聪慧的乐驹完成签到,获得积分10
13秒前
高高完成签到,获得积分10
13秒前
共享精神应助老阳采纳,获得10
14秒前
fwl完成签到 ,获得积分10
14秒前
狗宅完成签到 ,获得积分10
15秒前
求求发布了新的文献求助10
15秒前
Hurricane完成签到,获得积分10
15秒前
16秒前
CipherSage应助heyheybaby采纳,获得10
17秒前
吴路发布了新的文献求助10
17秒前
18秒前
19秒前
21秒前
JQKing发布了新的文献求助10
22秒前
23秒前
现代水蓉发布了新的文献求助10
25秒前
Qianbaor68应助三石采纳,获得10
25秒前
老阳发布了新的文献求助10
25秒前
Orange应助禾沐采纳,获得10
26秒前
狮子座发布了新的文献求助10
26秒前
科研通AI5应助快乐风松采纳,获得50
28秒前
30秒前
爱听歌的孤容完成签到 ,获得积分10
31秒前
飞一般的亮哥完成签到,获得积分10
31秒前
35秒前
BH6小行星发布了新的文献求助10
35秒前
123发布了新的文献求助10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738671
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027439
捐赠科研通 2998763
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782819
科研通“疑难数据库(出版商)”最低求助积分说明 749975