Cascade Fusion and Correlation Enhancement for Knowledge Distillation

级联 蒸馏 相关性 融合 人工智能 色谱法 化学 生化工程 计算机科学 数学 工程类 哲学 语言学 几何学
作者
Bin Sun,Zhiqiang Long,Ziyu Ma,Shutao Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2025.3539991
摘要

Knowledge distillation (KD) improves the performance of a compact student network by transferring learned knowledge from a cumbersome teacher network. In the existing approaches, the multiscale feature knowledge is transferred via densely connected paths, which increases the optimization difficulty. Moreover, correlations among the labels are neglected despite their capability to enhance the intraclass similarity of samples. To solve these issues, we propose cascade fusion and correlation enhancement for KD (CC-KD). The multiscale feature knowledge is transferred via much simpler paths, which are constructed by fusing features of different scales with cross-scale attention (CSA) in a cascade manner, thereby reducing the optimization difficulty. On the other hand, the relational knowledge of teacher logits is further enhanced by correlations of the corresponding labels, so that the student can produce more similar logits for the samples in the same category. Extensive experimental results on five public datasets (i.e., CIFAR100/10, ImageNet, RAF-DB, and FERPlus) indicate superior performance of the proposed method over several state-of-the-arts (SOTAs). More specifically, our method obtains an accuracy of 71.70% on ImageNet and achieves a new record of 90.20% on RAF-DB with fewer calculations and parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
菠萝贺贺完成签到,获得积分10
1秒前
啦啦啦啦啦啦啦完成签到,获得积分20
1秒前
1秒前
Stephen发布了新的文献求助20
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
JamesPei应助浩二采纳,获得10
2秒前
les3完成签到,获得积分10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
英俊的铭应助无聊的念蕾采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
yiqi完成签到,获得积分20
3秒前
所所应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
FashionBoy应助chen。采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
zxy应助科研通管家采纳,获得20
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
英俊的铭应助wancheng_采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
杳鸢应助科研通管家采纳,获得50
3秒前
4秒前
宋宋宋2发布了新的文献求助10
4秒前
4秒前
慕青应助易达采纳,获得30
4秒前
5秒前
5秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525756
求助须知:如何正确求助?哪些是违规求助? 3106333
关于积分的说明 9279553
捐赠科研通 2803844
什么是DOI,文献DOI怎么找? 1539090
邀请新用户注册赠送积分活动 716393
科研通“疑难数据库(出版商)”最低求助积分说明 709449