Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model

山崩 地理空间分析 概化理论 空间异质性 自然地理学 岩性 植被(病理学) 代表性启发 地图学 空间数据库 遥感 地质学 空间分析 地理 地貌学 生态学 统计 数学 医学 古生物学 病理 生物
作者
Junyi Zhang,Xianglong Ma,Jialan Zhang,Deliang Sun,Xinzhi Zhou,Changlin Mi,Haijia Wen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:332: 117357-117357 被引量:158
标识
DOI:10.1016/j.jenvman.2023.117357
摘要

The spatial heterogeneity of landslide influencing factors is the main reason for the poor generalizability of the susceptibility evaluation model. This study aimed to construct a comprehensive explanatory framework for landslide susceptibility evaluation models based on the SHAP (SHapley Additive explanation)-XGBoost (eXtreme Gradient Boosting) algorithm, analyze the regional characteristics and spatial heterogeneity of landslide influencing factors, and discuss the heterogeneity of the generalizability of the models under different landscapes. Firstly, we selected different regions in typical mountainous hilly region and constructed a geospatial database containing 12 landslide influencing factors such as elevation, annual average rainfall, slope, lithology, and NDVI through field surveys, satellite images, and a literature review. Subsequently, the landslide susceptibility evaluation model was constructed based on the XGBoost algorithm and spatial database, and the prediction results of the landslide susceptibility evaluation model were explained based on regional topography, geology, and hydrology using the SHAP algorithm. Finally, the model was generalized and applied to regions with both similar and very different topography, geology, meteorology, and vegetation, to explore the spatial heterogeneity of the generalizability of the model. The following conclusions were drawn: the spatial distribution of landslides is heterogeneous and complex, and the contribution of each influencing factor on the occurrence of landslides has obvious regional characteristics and spatial heterogeneity. The generalizability of the landslide susceptibility evaluation model is spatially heterogeneous and has better generalizability to regions with similar regional characteristics. Further explanation of the XGBoost landslide susceptibility evaluation model using the SHAP method allows quantitative analysis of the differences in how much various factors contribute to disasters due to spatial heterogeneity, from the perspective of global and local evaluation units. In summary, the integrated explanatory framework based on the SHAP-XGBoost model can quantify the contribution of influencing factors on landslide occurrence at both global and local levels, which is conducive to the construction and improvement of the influencing factor system of landslide susceptibility in different regions. It can also provide a reference for predicting potential landslide hazard-prone areas and for Explainable Artificial Intelligence (XAI) research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shujing1234发布了新的文献求助10
刚刚
Darlin完成签到,获得积分10
1秒前
朱佳宁关注了科研通微信公众号
1秒前
朴实夏烟完成签到,获得积分20
2秒前
搜集达人应助毕坚强采纳,获得10
2秒前
逢春发布了新的文献求助10
2秒前
Amadeus发布了新的文献求助10
3秒前
小蚊子发布了新的文献求助10
4秒前
冰糖葫芦完成签到 ,获得积分10
4秒前
zhoup关注了科研通微信公众号
4秒前
6秒前
酷炫翠桃应助部川苦茶采纳,获得10
7秒前
epapa发布了新的文献求助10
7秒前
8秒前
起風了完成签到,获得积分10
9秒前
9秒前
10秒前
aibi发布了新的文献求助10
10秒前
10秒前
Amadeus完成签到,获得积分10
11秒前
12秒前
clvv发布了新的文献求助10
14秒前
科研小将发布了新的文献求助10
14秒前
Owen应助你好呀采纳,获得10
14秒前
酷炫翠桃应助部川苦茶采纳,获得10
16秒前
不吃香菜完成签到,获得积分10
16秒前
17秒前
17秒前
在水一方应助康2000采纳,获得10
17秒前
冰韵心发布了新的文献求助30
17秒前
zhoup发布了新的文献求助30
18秒前
ZHU给ZHU的求助进行了留言
18秒前
19秒前
旺仔完成签到,获得积分20
19秒前
harperre发布了新的文献求助10
20秒前
22秒前
清图完成签到,获得积分10
24秒前
Jerry完成签到,获得积分10
26秒前
田様应助WW采纳,获得10
26秒前
27秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206752
求助须知:如何正确求助?哪些是违规求助? 2856202
关于积分的说明 8103078
捐赠科研通 2521321
什么是DOI,文献DOI怎么找? 1354373
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613209