Optimization of the generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double- β decay: Ridge regression for nuclei with axial deformation

物理 哈密顿量(控制论) 双β衰变 算法 粒子物理学 中微子 计算机科学 数学 数学优化
作者
X. Zhang,W. Lin,Jiangming Yao,Chang-Feng Jiao,A. M. Romero,Tomás R. Rodríguez,H. Hergert
出处
期刊:Physical Review C 卷期号:107 (2)
标识
DOI:10.1103/physrevc.107.024304
摘要

Background: The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective motion in atomic nuclei. Recently, it has attracted increasing interest as it can be exploited to extend ab initio methods to the collective excitations of medium-mass and heavy deformed nuclei, as well as the nuclear matrix elements (NME) of candidates for neutrinoless double-beta ($0\ensuremath{\nu}\ensuremath{\beta}\ensuremath{\beta}$) decay.Purpose: The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes a strong restriction on the applicability of the method. We aim to exploit statistical machine-learning (ML) algorithms to speed up GCM calculations and ultimately provide a more efficient description of nuclear energy spectra and other observables such as the NME of $0\ensuremath{\nu}\ensuremath{\beta}\ensuremath{\beta}$ decay without loss of accuracy.Method: In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state $0\ensuremath{\nu}\ensuremath{\beta}\ensuremath{\beta}$ decay based on the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. Nuclear energy spectra are determined by the GCM through the configuration mixing within this subspace. For simplicity, the polynomial ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The efficiency and accuracy of this algorithm are illustrated for $^{76}\mathrm{Ge}$ and $^{76}\mathrm{Se}$ by comparing results obtained using the optimal RR models to direct GCM calculations. The nonrelativistic Gogny force D1S and relativistic energy density functional PC-PK1, a valence-space shell-model Hamiltonian, and a modern nuclear interaction derived from chiral effective field theory are employed.Results: The low-lying energy spectra of $^{76}\mathrm{Ge}$ and $^{76}\mathrm{Se}$, as well as the $0\ensuremath{\nu}\ensuremath{\beta}\ensuremath{\beta}$-decay NME between their ground states, are computed. The results show that the performance of the $\mathrm{GCM}+\text{OC/ENTROP}+\mathrm{RR}$ is more robust than that of the $\mathrm{GCM}+\mathrm{RR}$ alone, and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational cost.Conclusions: Statistical ML algorithms, when implemented properly, can accelerate GCM calculations without loss of accuracy. In applications with axially deformed states, the computation time can be reduced by a factor of three to nine for energy spectra and NMEs, respectively. This factor is expected to increase significantly with the number of employed generator coordinates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
longjie完成签到,获得积分10
1秒前
茶底完成签到,获得积分10
2秒前
3秒前
笨小孩完成签到,获得积分10
3秒前
徐先生完成签到,获得积分10
3秒前
乐乐应助D&L采纳,获得10
3秒前
3秒前
俟天晴完成签到,获得积分10
5秒前
Orange应助菠萝派采纳,获得10
5秒前
5秒前
茶底发布了新的文献求助10
6秒前
7秒前
8秒前
Zeling完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
Catherine完成签到,获得积分20
9秒前
田様应助Gary采纳,获得10
9秒前
张豪杰发布了新的文献求助10
9秒前
陈小宇kk完成签到,获得积分10
9秒前
张航完成签到,获得积分10
10秒前
10秒前
10秒前
葛辉辉发布了新的文献求助20
10秒前
11秒前
littleJ完成签到,获得积分10
11秒前
乐乐应助nickel采纳,获得10
11秒前
俏皮听寒发布了新的文献求助10
12秒前
贺豪发布了新的文献求助30
12秒前
科研通AI2S应助过昭关采纳,获得10
13秒前
14秒前
cc完成签到,获得积分10
15秒前
别凡发布了新的文献求助10
15秒前
16秒前
嘻嘻完成签到 ,获得积分10
16秒前
隐形曼青应助沐兮采纳,获得10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012