How the experimental design associated with objectivized sensory analysis can be used to predict odor quality of gaseous mixtures?

气味 背景(考古学) 化学 感觉系统 感官分析 人工智能 生化工程 生物系统 计算机科学 心理学 认知心理学 食品科学 有机化学 工程类 生物 古生物学
作者
Charbel Hawko,Nicolas Hucher,Sabine Crunaire,Céline Léger,Nadine Locoge,Marie Verrièle,Géraldine Savary
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:235: 104780-104780 被引量:2
标识
DOI:10.1016/j.chemolab.2023.104780
摘要

From environmental nuisances to perfumes and aromas, the need to understand odorous interactions is growing. In this context, sensory analysis is often used but faces an obstacle when dealing with odor mixtures. Indeed, sensory approaches provide data on the global nature and intensity of these mixtures, but these methods cannot reveal the various interactions taking place when perceiving an odor. To address this issue, modeling the variations in odor nature and intensity according to the composition of complex mixtures offers insight into sensory interactions as well as a tool to predict odor nature and intensity. While several models have been developed for odor intensity, models for odor nature are scarce. In this study, an experimental mixture design is combined with sensory analysis with the aim of developing new numerical models that transform chemical data into sensory data. Mixtures of four odorants, dimethyl disulfide (DMDS), toluene, furfuryl mercaptan, and cyclopentanone are composed of multiple values of the Odor Activity Value (OAV) for each odorant. The odor nature of each mixture is described using Langage des Nez® (LdN), an objectivized odor nature description method. The variation in odor nature with the composition of the mixture is modeled using the experimental mixture design. The yielded models are shown to be valid and of relatively good descriptive (adjusted R2) between 0.610 and 0.925) and predictive (predictive R2 between 0.390 and 0.886) qualities. The models provide insight into the individual contributions and binary and ternary interactions among the odorants impacting the global odor nature. Moreover, the models allow the odor nature of a mixture to be predicted by transforming the chemical concentration of each odorant into an odor nature description. These results may be an answer to the question raised by the odor mixture effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不是省油的灯完成签到 ,获得积分10
1秒前
limz完成签到,获得积分10
1秒前
白鱼neko完成签到 ,获得积分10
2秒前
2秒前
voifhpg完成签到 ,获得积分10
3秒前
小蘑菇应助wenge采纳,获得10
3秒前
mianbao发布了新的文献求助20
4秒前
小鱼完成签到,获得积分10
5秒前
5秒前
书临完成签到 ,获得积分10
5秒前
7秒前
科目三应助缥缈的青旋采纳,获得10
8秒前
十三完成签到 ,获得积分10
8秒前
寒月如雪发布了新的文献求助10
10秒前
爱打工的帕鲁完成签到 ,获得积分10
11秒前
ddd发布了新的文献求助10
11秒前
chenxin完成签到,获得积分10
11秒前
沉默的含巧完成签到,获得积分10
12秒前
lalala完成签到,获得积分20
14秒前
15秒前
沉着发布了新的文献求助10
16秒前
16秒前
赵雪萌完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
田様应助msk采纳,获得10
20秒前
ddd完成签到,获得积分10
20秒前
lkx发布了新的文献求助10
21秒前
多亿点完成签到 ,获得积分10
21秒前
烟花应助wiwi采纳,获得10
22秒前
赵悦如发布了新的文献求助10
23秒前
24秒前
颜凡桃发布了新的文献求助30
25秒前
lkx完成签到,获得积分10
28秒前
29秒前
29秒前
30秒前
hualin发布了新的文献求助10
30秒前
壮观的擎发布了新的文献求助10
31秒前
HH完成签到,获得积分20
32秒前
慕青应助科研通管家采纳,获得10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160