TLR4型
肠道菌群
博莱霉素
生物
信号转导
肺纤维化
细胞凋亡
促炎细胞因子
炎症
免疫学
纤维化
医学
细胞生物学
病理
生物化学
遗传学
化疗
作者
Yi Wei,Ming Qi,Chao Liu,Lujia Li
标识
DOI:10.1016/j.ejphar.2023.175594
摘要
Astragalus polysaccharide (APS) is a naturally-occurring compound derived from Astragalus membranaceus with anti-inflammatory and antioxidant properties. However, its beneficial effects and mechanisms on pulmonary fibrosis are unknown. Gut microbiota impact lung diseases via the gut-lung axis. Herein, we investigated APS progression to intervene in pulmonary fibrosis via the toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway and gut microbiota homeostasis regulation.We used bleomycin (BLM) to construct an idiopathic pulmonary fibrosis (IPF) mouse model and assessed the pathology with Masson, hematoxylin-eosin (HE), and Sirius red staining. Enzyme-linked immunosorbent assay (ELISA) kits were employed to evaluate the inflammatory cytokine levels. Western blot evaluated TLR4/NF-κB signaling pathway expression. TUNEL staining to detect apoptosis. Mice feces samples were gathered for 16S rRNA gene sequencing.Our findings revealed that APS ameliorated the extent of damage and collagen deposition in lung tissues, reduced inflammatory cytokines TNF-α, IL-6, and IL-1β levels, and decreased apoptosis. APS might attenuate the inflammatory response through TLR4/NF-κB signaling pathway inhibition. Meanwhile, the IPF mice model exhibited dysregulation of gut microbiota, and these changes were restored after APS intervention. APS may increase the proportion of probiotics, decrease that of harmful bacteria, and balance the gut microbiota via regulating metabolic pathways.APS ameliorated lung tissue injury in the IPF mice model, inhibited TLR4/NF-κB signaling pathway, suppressed inflammatory cytokines activation, and reduced apoptosis. Moreover, APS regulated the metabolism of gut microbiota besides beneficial bacteria content elevation.
科研通智能强力驱动
Strongly Powered by AbleSci AI