计算机科学
形势意识
自动化
领域(数学分析)
动作(物理)
传感器融合
透视图(图形)
智能决策支持系统
钥匙(锁)
情境伦理学
系统工程
风险分析(工程)
人机交互
知识管理
数据科学
管理科学
人工智能
计算机安全
工程类
机械工程
医学
数学分析
物理
数学
量子力学
法学
政治学
航空航天工程
出处
期刊:Tm-technisches Messen
[Oldenbourg Wissenschaftsverlag]
日期:2023-02-09
卷期号:90 (3): 166-176
被引量:2
标识
DOI:10.1515/teme-2022-0094
摘要
Abstract Artificially intelligent automation has not only impact on sensor technologies, but also on comprehensive multiple sensor systems for assisting situational awareness and decision-making. This is particularly true for integrated Manned-unManned-Teaming (MuM-T), for example. From a systems engineering perspective which does not exclude applications in the defence domain, three tasks need to be fulfilled: (1) Design artificially intelligent automation in a way that human beings are mentally and emotionally able to master each situation. (2) Identify technical design principles to facilitate the responsible use of AI in ethically critical applications. (3) Guarantee that human decision makers always have full superiority of information, decision-making, and options of action. Our discussion of AI-driven systems for multiple sensor data fusion results in recommendations and key results. We are addressing the algorithms needed, the data to be processed, the programming skills required, the computing devices to be used, the inevitable anthropocentric design, the reviewing of R & D efforts necessary, and the integration of different dimensions in a systems-of-systems point of view.
科研通智能强力驱动
Strongly Powered by AbleSci AI