Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition

计算机科学 人工智能 分类器(UML) 机器学习 余弦相似度 学习迁移 模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:71
标识
DOI:10.1109/tnnls.2023.3240195
摘要

Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助缪伟采纳,获得10
刚刚
JXY完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
知名不具发布了新的文献求助10
1秒前
赫连烙发布了新的文献求助10
2秒前
笑点低的秋蝶完成签到,获得积分10
3秒前
叮叮当当发布了新的文献求助30
4秒前
4秒前
ying完成签到,获得积分10
4秒前
dopamine发布了新的文献求助10
5秒前
麦乐迪应助圆圆采纳,获得10
6秒前
7秒前
幼儿园老大完成签到,获得积分10
7秒前
infe完成签到,获得积分10
7秒前
高高完成签到,获得积分10
7秒前
可爱问寒完成签到 ,获得积分20
8秒前
乘乘完成签到 ,获得积分10
9秒前
Syanyi完成签到 ,获得积分10
9秒前
9秒前
9秒前
领导范儿应助宁阿霜采纳,获得10
11秒前
知名不具发布了新的文献求助10
13秒前
13秒前
13秒前
小二郎应助称心的寄风采纳,获得10
14秒前
荼蘼发布了新的文献求助10
14秒前
吱吱吱完成签到 ,获得积分10
14秒前
Qianwen发布了新的文献求助10
15秒前
VDC应助虚心的芹采纳,获得30
15秒前
15秒前
高兴的又菡完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
linman发布了新的文献求助10
17秒前
马兵发布了新的文献求助10
18秒前
Saya发布了新的文献求助10
18秒前
LL发布了新的文献求助10
18秒前
我爱睡觉完成签到 ,获得积分10
19秒前
yenom发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176