Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition

计算机科学 人工智能 分类器(UML) 机器学习 余弦相似度 学习迁移 模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:53
标识
DOI:10.1109/tnnls.2023.3240195
摘要

Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEE给LEE的求助进行了留言
2秒前
孤独师发布了新的文献求助10
3秒前
4秒前
5秒前
深情安青应助易烊千玺采纳,获得10
6秒前
chan完成签到 ,获得积分20
9秒前
梦梦完成签到,获得积分10
11秒前
简单的可愁完成签到,获得积分10
12秒前
12秒前
搞怪的定帮完成签到,获得积分20
13秒前
13秒前
15秒前
Annie发布了新的文献求助10
15秒前
awu发布了新的文献求助10
15秒前
爱静静应助yueyangyin采纳,获得10
18秒前
18秒前
zhshyhy完成签到,获得积分10
19秒前
易烊千玺发布了新的文献求助10
19秒前
19秒前
小野狼发布了新的文献求助30
19秒前
orixero应助菠萝披萨采纳,获得10
19秒前
20秒前
陶醉的海冬完成签到 ,获得积分10
20秒前
得鹿梦鱼完成签到 ,获得积分10
22秒前
7788999完成签到,获得积分10
22秒前
惜曦完成签到 ,获得积分10
22秒前
23秒前
kd关闭了kd文献求助
23秒前
moncypool发布了新的文献求助10
24秒前
遂安完成签到,获得积分10
24秒前
嘻哈学习完成签到,获得积分10
25秒前
152522发布了新的文献求助10
25秒前
26秒前
小板栗完成签到,获得积分10
27秒前
longquit完成签到,获得积分10
28秒前
半岛铁盒完成签到,获得积分10
30秒前
LHL发布了新的文献求助10
30秒前
文瑄完成签到 ,获得积分10
30秒前
孙苗条完成签到,获得积分10
31秒前
科目三应助152522采纳,获得10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760