Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition

计算机科学 人工智能 分类器(UML) 机器学习 余弦相似度 学习迁移 模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:71
标识
DOI:10.1109/tnnls.2023.3240195
摘要

Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助孤独紫南采纳,获得30
刚刚
liangyuting完成签到,获得积分10
1秒前
慈祥的晓蓝完成签到 ,获得积分10
1秒前
潇洒的小鸽子完成签到 ,获得积分0
3秒前
早睡一哥完成签到,获得积分10
3秒前
XXX完成签到,获得积分10
5秒前
Xianhe完成签到,获得积分10
7秒前
科研通AI2S应助666采纳,获得10
8秒前
海鲜汤完成签到 ,获得积分10
9秒前
9秒前
Lucas应助科研小白采纳,获得10
11秒前
11秒前
萧萧完成签到,获得积分10
12秒前
胡捷应助Awei采纳,获得20
14秒前
wynn发布了新的文献求助30
15秒前
zxt发布了新的文献求助10
16秒前
坦率橘子完成签到,获得积分10
16秒前
17秒前
apocalypse完成签到 ,获得积分10
19秒前
pan发布了新的文献求助10
20秒前
世佳何完成签到,获得积分10
22秒前
24秒前
孤独紫南发布了新的文献求助30
25秒前
25秒前
27秒前
沧笙踏歌应助司徒无剑采纳,获得10
31秒前
乖猫要努力应助cco采纳,获得10
31秒前
Aurora发布了新的文献求助10
32秒前
威武的沂完成签到,获得积分10
34秒前
37秒前
38秒前
司徒无剑完成签到,获得积分10
40秒前
美人鱼战士完成签到 ,获得积分10
41秒前
王贺帅完成签到 ,获得积分10
41秒前
shinn发布了新的文献求助10
43秒前
43秒前
43秒前
44秒前
yar应助翎尧采纳,获得10
44秒前
zyy完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494