Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition

计算机科学 人工智能 分类器(UML) 机器学习 余弦相似度 学习迁移 模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:71
标识
DOI:10.1109/tnnls.2023.3240195
摘要

Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一点完成签到,获得积分10
刚刚
慕青应助一只象棕熊采纳,获得10
刚刚
pp1230发布了新的文献求助10
1秒前
xueluxin完成签到 ,获得积分10
2秒前
科研通AI5应助借一颗糖采纳,获得10
2秒前
4秒前
克林沙星完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
害怕的笑槐应助kittykitten采纳,获得10
7秒前
orixero应助wwb采纳,获得30
8秒前
大模型应助iiing采纳,获得10
8秒前
简耗子完成签到 ,获得积分10
8秒前
9秒前
cxy3311完成签到,获得积分10
9秒前
固态完成签到,获得积分10
9秒前
FashionBoy应助dreamy4869采纳,获得10
11秒前
自觉博超完成签到,获得积分10
11秒前
Maggie完成签到 ,获得积分10
12秒前
Jaden完成签到,获得积分10
12秒前
NexusExplorer应助傲娇泥猴桃采纳,获得30
12秒前
14秒前
李健应助侠女采纳,获得10
14秒前
大模型应助过过过采纳,获得10
14秒前
鱼海寻俞发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
tt发布了新的文献求助10
18秒前
香蕉赛君完成签到,获得积分10
19秒前
19秒前
借一颗糖发布了新的文献求助10
19秒前
20秒前
liujinjin完成签到,获得积分10
20秒前
魁梧的曼易完成签到,获得积分10
20秒前
sylvia完成签到 ,获得积分10
21秒前
21秒前
纷纭完成签到,获得积分10
22秒前
weiwenzuo发布了新的文献求助10
23秒前
红莲墨生发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771