计算机科学
人工智能
分类器(UML)
机器学习
余弦相似度
学习迁移
模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
被引量:53
标识
DOI:10.1109/tnnls.2023.3240195
摘要
Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI