AgriDet: Plant Leaf Disease severity classification using agriculture detection framework

计算机科学 过度拟合 人工智能 卷积神经网络 分割 植物病害 机器学习 模式识别(心理学) 深度学习 领域(数学) 人工神经网络 数学 生物 生物技术 纯数学
作者
Arunangshu Pal,Vinay Kumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105754-105754 被引量:70
标识
DOI:10.1016/j.engappai.2022.105754
摘要

In the field of modern agriculture, plant disease detection plays a vital role in improving crop productivity. To increase the yield on a large scale, it is necessary to predict the onset of the disease and give advice to farmers. Previous methods for detecting plant diseases rely on manual feature extraction, which is more expensive. Therefore, image-based techniques are gaining interest in the research area of plant disease detection. However, existing methods have several problems due to the improper nature of the captured image, including improper background conditions that lead to occlusion, illumination, orientation, and size. Also, cost complexity, misclassifications, and overfitting problems occur in several real-time applications. To solve these issues, we proposed an Agriculture Detection (AgriDet) framework that incorporates conventional Inception-Visual Geometry Group Network (INC-VGGN) and Kohonen-based deep learning networks to detect plant diseases and classify the severity level of diseased plants. In this framework, image pre-processing is done to remove all the constraints in the captured image. Then, the occlusion problem is tackled by the proposed multi-variate grabcut algorithm for effective segmentation. Furthermore, the framework performs accurate disease detection and classification by utilizing an improved base network, namely a pre-trained conventionally based INC-VGGN model. Here, the pre-trained INC-VGGN model is a deep convolutional neural network for prediction of plant diseases that was previously trained for the distinctive dataset. The pre-trained weights and the features learned in this base network are transferred into the newly developed neural network to perform the specific task of plant disease detection for our dataset. In order to overcome the overfitting problem, a dropout layer is introduced, and the deep learning of features is performed using the Kohonen learning layer. After percentage computation, the improved base network classifies the severity classes in the training sets. Finally, the performance of the framework is computed for different performance metrics and achieves better accuracy than previous models. Also, the performance of the statistical analysis is validated to prove the results in terms of accuracy, specificity, and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助忐忑的远山采纳,获得20
刚刚
端庄不斜完成签到,获得积分10
刚刚
1秒前
今后应助外向的新儿采纳,获得10
1秒前
小锤发布了新的文献求助10
1秒前
HanruiWang完成签到,获得积分10
1秒前
2秒前
bkagyin应助机灵的怀绿采纳,获得10
2秒前
meiwei完成签到,获得积分10
3秒前
hw20010926完成签到 ,获得积分10
3秒前
dtf完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
松松关注了科研通微信公众号
5秒前
5秒前
大胆的以冬完成签到,获得积分10
5秒前
大方的觅海完成签到,获得积分10
6秒前
只如初发布了新的文献求助10
6秒前
SYLH应助斯文火龙果采纳,获得10
6秒前
易安发布了新的文献求助10
6秒前
木桶人plus完成签到 ,获得积分10
6秒前
shino发布了新的文献求助10
7秒前
7秒前
学术z完成签到,获得积分10
8秒前
晓军完成签到,获得积分10
8秒前
研友_rLmNXn完成签到,获得积分10
8秒前
开朗的睫毛膏完成签到,获得积分10
8秒前
8秒前
9秒前
语黛完成签到,获得积分10
9秒前
完美世界应助enen采纳,获得10
9秒前
10秒前
Jean发布了新的文献求助10
10秒前
小羊发布了新的文献求助30
10秒前
10秒前
木质素爱好者完成签到,获得积分10
11秒前
Notdodead应助甜甜的高跟鞋采纳,获得20
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650