AgriDet: Plant Leaf Disease severity classification using agriculture detection framework

计算机科学 过度拟合 人工智能 卷积神经网络 分割 植物病害 机器学习 模式识别(心理学) 深度学习 领域(数学) 人工神经网络 数学 生物 生物技术 纯数学
作者
Arunangshu Pal,Vinay Kumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105754-105754 被引量:70
标识
DOI:10.1016/j.engappai.2022.105754
摘要

In the field of modern agriculture, plant disease detection plays a vital role in improving crop productivity. To increase the yield on a large scale, it is necessary to predict the onset of the disease and give advice to farmers. Previous methods for detecting plant diseases rely on manual feature extraction, which is more expensive. Therefore, image-based techniques are gaining interest in the research area of plant disease detection. However, existing methods have several problems due to the improper nature of the captured image, including improper background conditions that lead to occlusion, illumination, orientation, and size. Also, cost complexity, misclassifications, and overfitting problems occur in several real-time applications. To solve these issues, we proposed an Agriculture Detection (AgriDet) framework that incorporates conventional Inception-Visual Geometry Group Network (INC-VGGN) and Kohonen-based deep learning networks to detect plant diseases and classify the severity level of diseased plants. In this framework, image pre-processing is done to remove all the constraints in the captured image. Then, the occlusion problem is tackled by the proposed multi-variate grabcut algorithm for effective segmentation. Furthermore, the framework performs accurate disease detection and classification by utilizing an improved base network, namely a pre-trained conventionally based INC-VGGN model. Here, the pre-trained INC-VGGN model is a deep convolutional neural network for prediction of plant diseases that was previously trained for the distinctive dataset. The pre-trained weights and the features learned in this base network are transferred into the newly developed neural network to perform the specific task of plant disease detection for our dataset. In order to overcome the overfitting problem, a dropout layer is introduced, and the deep learning of features is performed using the Kohonen learning layer. After percentage computation, the improved base network classifies the severity classes in the training sets. Finally, the performance of the framework is computed for different performance metrics and achieves better accuracy than previous models. Also, the performance of the statistical analysis is validated to prove the results in terms of accuracy, specificity, and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得之我幸完成签到,获得积分10
刚刚
1秒前
激情的自行车完成签到,获得积分10
2秒前
2秒前
白蓝红完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
JamesPei应助科研小白采纳,获得10
4秒前
深情安青应助runtang采纳,获得30
4秒前
songcy7完成签到,获得积分10
4秒前
烟花应助六芒星采纳,获得10
5秒前
andy_lee发布了新的文献求助10
5秒前
6秒前
司徒水绿完成签到 ,获得积分10
6秒前
嘻嘻嘻发布了新的文献求助10
6秒前
削皮柚子发布了新的文献求助10
7秒前
俭朴蜜蜂发布了新的文献求助200
8秒前
依夏祭完成签到,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
9秒前
天天快乐应助粤十一采纳,获得10
10秒前
YiJin_Wang发布了新的文献求助10
11秒前
乐情发布了新的文献求助20
11秒前
14秒前
wxs发布了新的文献求助10
14秒前
可爱的函函应助酷酷巧蟹采纳,获得10
15秒前
15秒前
blablawindy发布了新的文献求助10
16秒前
科研小白发布了新的文献求助10
17秒前
李爱国应助嘿咻采纳,获得10
17秒前
17秒前
17秒前
Steven发布了新的文献求助10
18秒前
18秒前
迟有朝完成签到,获得积分10
20秒前
崔佳慧发布了新的文献求助10
20秒前
粤十一完成签到,获得积分10
21秒前
22秒前
angelinazh完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206