亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AgriDet: Plant Leaf Disease severity classification using agriculture detection framework

计算机科学 过度拟合 人工智能 卷积神经网络 分割 植物病害 机器学习 模式识别(心理学) 深度学习 领域(数学) 人工神经网络 数学 生物 生物技术 纯数学
作者
Arunangshu Pal,Vinay Kumar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105754-105754 被引量:70
标识
DOI:10.1016/j.engappai.2022.105754
摘要

In the field of modern agriculture, plant disease detection plays a vital role in improving crop productivity. To increase the yield on a large scale, it is necessary to predict the onset of the disease and give advice to farmers. Previous methods for detecting plant diseases rely on manual feature extraction, which is more expensive. Therefore, image-based techniques are gaining interest in the research area of plant disease detection. However, existing methods have several problems due to the improper nature of the captured image, including improper background conditions that lead to occlusion, illumination, orientation, and size. Also, cost complexity, misclassifications, and overfitting problems occur in several real-time applications. To solve these issues, we proposed an Agriculture Detection (AgriDet) framework that incorporates conventional Inception-Visual Geometry Group Network (INC-VGGN) and Kohonen-based deep learning networks to detect plant diseases and classify the severity level of diseased plants. In this framework, image pre-processing is done to remove all the constraints in the captured image. Then, the occlusion problem is tackled by the proposed multi-variate grabcut algorithm for effective segmentation. Furthermore, the framework performs accurate disease detection and classification by utilizing an improved base network, namely a pre-trained conventionally based INC-VGGN model. Here, the pre-trained INC-VGGN model is a deep convolutional neural network for prediction of plant diseases that was previously trained for the distinctive dataset. The pre-trained weights and the features learned in this base network are transferred into the newly developed neural network to perform the specific task of plant disease detection for our dataset. In order to overcome the overfitting problem, a dropout layer is introduced, and the deep learning of features is performed using the Kohonen learning layer. After percentage computation, the improved base network classifies the severity classes in the training sets. Finally, the performance of the framework is computed for different performance metrics and achieves better accuracy than previous models. Also, the performance of the statistical analysis is validated to prove the results in terms of accuracy, specificity, and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiacheng完成签到,获得积分10
21秒前
小马甲应助开放的果汁采纳,获得10
22秒前
连长完成签到,获得积分10
27秒前
隐形曼青应助wwwww采纳,获得10
27秒前
35秒前
wwwww完成签到,获得积分10
37秒前
wwwww发布了新的文献求助10
40秒前
李健应助讷讷呐啊采纳,获得10
49秒前
56秒前
spark810发布了新的文献求助10
59秒前
农学小王完成签到 ,获得积分10
1分钟前
与共完成签到 ,获得积分10
1分钟前
Omni完成签到,获得积分10
1分钟前
spark810发布了新的文献求助10
1分钟前
KSung完成签到 ,获得积分10
1分钟前
不打扰完成签到 ,获得积分10
1分钟前
不安的裘完成签到 ,获得积分10
1分钟前
漂亮的衬衫完成签到,获得积分10
1分钟前
1分钟前
讷讷呐啊发布了新的文献求助10
1分钟前
熊二完成签到 ,获得积分10
1分钟前
小蘑菇应助耳东采纳,获得10
1分钟前
CynthiaaaCat完成签到,获得积分10
1分钟前
1分钟前
所所应助spark810采纳,获得10
1分钟前
领导范儿应助CynthiaaaCat采纳,获得10
1分钟前
2分钟前
Yeah发布了新的文献求助10
2分钟前
Z1X2J3Y4完成签到,获得积分10
2分钟前
2分钟前
迅速友容发布了新的文献求助10
2分钟前
隐形曼青应助kdjm688采纳,获得10
2分钟前
午餐肉完成签到,获得积分10
2分钟前
讷讷呐啊完成签到 ,获得积分10
2分钟前
讷讷呐啊关注了科研通微信公众号
3分钟前
能干的夏瑶完成签到 ,获得积分10
3分钟前
蓦然回首完成签到,获得积分10
3分钟前
3分钟前
3分钟前
耳东发布了新的文献求助10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798009
关于积分的说明 7826443
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306317
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522