Selecting the Regularization Parameter in the Distribution of Relaxation Times

算法 人工智能 计算机科学
作者
Adeleke Maradesa,Baptiste Py,Ting Hei Wan,Mohammed B. Effat,Francesco Ciucci
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:170 (3): 030502-030502 被引量:31
标识
DOI:10.1149/1945-7111/acbca4
摘要

Electrochemical impedance spectroscopy (EIS) is used widely in electrochemistry. Obtaining EIS data is simple with modern electrochemical workstations. Yet, analyzing EIS spectra is still a considerable quandary. The distribution of relaxation times (DRT) has emerged as a solution to this challenge. However, DRT deconvolution underlies an ill-posed optimization problem, often solved by ridge regression, whose accuracy strongly depends on the regularization level λ . This article studies the selection of λ using several cross-validation (CV) methods and the L-curve approach. A hierarchical Bayesian DRT (hyper- λ ) deconvolution method is also analyzed, whereby λ 0 , a parameter analogous to λ , is obtained through CV. The analysis of a synthetic dataset suggests that the values of λ selected by generalized and modified generalized CV are the most accurate among those studied. Furthermore, the analysis of synthetic EIS spectra indicates that the hyper- λ approach outperforms optimal ridge regression. Due to its broad scope, this research will foster additional research on the vital topics of hyperparameter selection for DRT deconvolution. This article also provides, through pyDRTtools, an implementation, which will serve as a starting point for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jevon应助粉色棉毛裤采纳,获得10
刚刚
aefs发布了新的文献求助10
刚刚
2秒前
2秒前
jevon应助zwhy采纳,获得10
3秒前
ZZZ完成签到,获得积分10
3秒前
4秒前
5秒前
Lucas应助www采纳,获得10
6秒前
7秒前
7秒前
dwls发布了新的文献求助10
7秒前
打打应助Sharyn227采纳,获得10
8秒前
橙c美式发布了新的文献求助80
8秒前
9秒前
酷炫雅青发布了新的文献求助10
9秒前
远山完成签到 ,获得积分10
9秒前
10秒前
乐观芹发布了新的文献求助10
12秒前
13秒前
CC完成签到,获得积分20
13秒前
格格巫发布了新的文献求助10
14秒前
思源应助善良的冰颜采纳,获得10
15秒前
16秒前
科研通AI2S应助秋子采纳,获得10
16秒前
苗条一兰发布了新的文献求助10
17秒前
17秒前
大脸猫完成签到,获得积分10
17秒前
所所应助快乐小兰采纳,获得10
18秒前
18秒前
平淡思雁发布了新的文献求助10
19秒前
Lucas应助冰红茶采纳,获得10
20秒前
午见千山应助魁梧的灵枫采纳,获得10
20秒前
dwls完成签到,获得积分10
22秒前
乐观芹完成签到,获得积分20
23秒前
Ava应助格格巫采纳,获得10
23秒前
Owen应助格格巫采纳,获得10
23秒前
luwenxuan发布了新的文献求助10
23秒前
落尘发布了新的文献求助10
23秒前
张雯雯完成签到,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233633
求助须知:如何正确求助?哪些是违规求助? 2880198
关于积分的说明 8214308
捐赠科研通 2547604
什么是DOI,文献DOI怎么找? 1377100
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623173