Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches

计算机科学 传感器融合 全球导航卫星系统应用 卡尔曼滤波器 人工智能 分析 实时计算 全球定位系统 同时定位和映射 导航系统 数据挖掘 机器人 移动机器人 电信
作者
Yuan Zhuang,Xiao Sun,You Li,Jianzhu Huai,Luchi Hua,Xiansheng Yang,Xiaoxiang Cao,Peng Zhang,Yue Cao,Longning Qi,Jun Yang,Nashwa El-Bendary,Naser El‐Sheimy,John Thompson,Ruizhi Chen
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 62-90 被引量:88
标识
DOI:10.1016/j.inffus.2023.01.025
摘要

Navigation/positioning systems have become critical to many applications, such as autonomous driving, Internet of Things (IoT), Unmanned Aerial Vehicle (UAV), and smart cities. However, it is difficult to provide a robust, accurate, and seamless solution with single navigation/positioning technology. For example, the Global Navigation Satellite System (GNSS) cannot perform satisfactorily indoors; consequently, multi-sensor integrated systems provide the solution, as they compensate for the limitations of single technology by using the complementary characteristics of different sensors. This article describes a thorough investigation into multi-sensor data fusion, which over the last ten years has been used for integrated positioning/navigation systems. In this article, different navigation/positioning systems are classified and elaborated upon from three aspects: (1) sources, (2) algorithms and architectures, and (3) scenarios, which we further divide into two categories: (i) analytics-based fusion and (ii) learning-based fusion. For analytics-based fusion, we discuss the Kalman filter and its variants, graph optimization methods, and integrated schemes. For learning-based fusion, several supervised, unsupervised, reinforcement learning, and deep learning techniques are illustrated in multi-sensor integrated positioning/navigation systems. Design consideration of these integrated systems is discussed in detail from several aspects and their application scenarios are categorized. Finally, future directions for their research and implementation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LuZhaoYang发布了新的文献求助80
1秒前
小青椒应助生动的千柳采纳,获得30
1秒前
1秒前
1秒前
李明1324完成签到,获得积分20
2秒前
2秒前
子小雨记完成签到,获得积分20
2秒前
2秒前
清脆圆子完成签到,获得积分10
3秒前
kirren完成签到,获得积分10
4秒前
啊啊啊啊啊啊完成签到 ,获得积分10
4秒前
在线人数九九加完成签到 ,获得积分10
4秒前
柒号完成签到,获得积分0
4秒前
所所应助ichi采纳,获得10
5秒前
5秒前
5秒前
5秒前
小白发布了新的文献求助10
6秒前
躞蹀发布了新的文献求助10
6秒前
7秒前
Demon应助VESong采纳,获得10
8秒前
wyn完成签到,获得积分10
8秒前
8秒前
10秒前
QQWQEQRQ发布了新的文献求助10
10秒前
浮游应助兴奋白枫采纳,获得10
11秒前
11秒前
zzz发布了新的文献求助20
11秒前
希望天下0贩的0应助小路采纳,获得10
11秒前
YKX完成签到,获得积分10
12秒前
鲤鱼月饼发布了新的文献求助10
13秒前
8R60d8完成签到,获得积分0
13秒前
懵懂的幻桃完成签到 ,获得积分10
14秒前
lancelot发布了新的文献求助10
14秒前
softquietone发布了新的文献求助10
14秒前
14秒前
乔雨蒙发布了新的文献求助10
14秒前
16秒前
拼搏向上发布了新的文献求助30
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322