Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches

计算机科学 传感器融合 人工智能 分析 实时计算 数据科学
作者
Yuan Zhuang,Xiao Sun,You Li,Jianzhu Huai,Luchi Hua,Xiansheng Yang,Xiaoxiang Cao,Peng Zhang,Yue Cao,Longning Qi,Jun Yang,Nashwa El-Bendary,Naser El‐Sheimy,John Thompson,Ruizhi Chen
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 62-90 被引量:51
标识
DOI:10.1016/j.inffus.2023.01.025
摘要

Navigation/positioning systems have become critical to many applications, such as autonomous driving, Internet of Things (IoT), Unmanned Aerial Vehicle (UAV), and smart cities. However, it is difficult to provide a robust, accurate, and seamless solution with single navigation/positioning technology. For example, the Global Navigation Satellite System (GNSS) cannot perform satisfactorily indoors; consequently, multi-sensor integrated systems provide the solution, as they compensate for the limitations of single technology by using the complementary characteristics of different sensors. This article describes a thorough investigation into multi-sensor data fusion, which over the last ten years has been used for integrated positioning/navigation systems. In this article, different navigation/positioning systems are classified and elaborated upon from three aspects: (1) sources, (2) algorithms and architectures, and (3) scenarios, which we further divide into two categories: (i) analytics-based fusion and (ii) learning-based fusion. For analytics-based fusion, we discuss the Kalman filter and its variants, graph optimization methods, and integrated schemes. For learning-based fusion, several supervised, unsupervised, reinforcement learning, and deep learning techniques are illustrated in multi-sensor integrated positioning/navigation systems. Design consideration of these integrated systems is discussed in detail from several aspects and their application scenarios are categorized. Finally, future directions for their research and implementation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hoijuon发布了新的文献求助20
1秒前
科目三应助唯一采纳,获得10
1秒前
1秒前
香蕉觅云应助唯一采纳,获得10
1秒前
liuhulang完成签到,获得积分20
1秒前
感动语蝶发布了新的文献求助10
1秒前
甄阁完成签到,获得积分20
1秒前
1秒前
身法马可波罗完成签到 ,获得积分10
2秒前
2秒前
hui关注了科研通微信公众号
2秒前
猫咪也疯狂应助YIN采纳,获得10
3秒前
德玛西亚完成签到,获得积分10
3秒前
思源应助冲塔亚德采纳,获得10
3秒前
3秒前
weirdo发布了新的文献求助10
3秒前
4秒前
李燕杰发布了新的文献求助10
5秒前
我是老大应助艾查恩采纳,获得10
5秒前
李爱国应助学会了吗采纳,获得10
6秒前
cxk6678发布了新的文献求助10
6秒前
温暖寻琴发布了新的文献求助10
6秒前
青菜完成签到,获得积分10
7秒前
liuhulang发布了新的文献求助20
7秒前
LZNUDT发布了新的文献求助10
7秒前
菠萝吹雪发布了新的文献求助10
7秒前
9秒前
在水一方应助无意的寻琴采纳,获得30
10秒前
kakafan完成签到,获得积分10
10秒前
不安青牛应助感动语蝶采纳,获得10
11秒前
11秒前
爆米花应助尊敬的夏槐采纳,获得10
12秒前
orixero应助阔达的曼凡采纳,获得10
12秒前
12秒前
李燕杰完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
mozhi完成签到,获得积分20
15秒前
本微尘发布了新的文献求助10
15秒前
慕青应助阿柱哥采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801212
关于积分的说明 7843671
捐赠科研通 2458704
什么是DOI,文献DOI怎么找? 1308586
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721