Deep learning automation of MEST-C classification in IgA nephropathy

医学 队列 卡帕 内科学 肾病 移植 危险系数 肌酐 接收机工作特性 人工智能 肾移植 糖尿病 计算机科学 置信区间 哲学 语言学 内分泌学
作者
Adrien Jaugey,Elise Maréchal,Georges Tarris,Michel Paindavoine,Laurent Martin,Melchior Chabannes,Mathilde Funes de la Vega,Mélanie Chaintreuil,Coline Robier,Didier Ducloux,Thomas Crépin,Sophie Félix,Amélie Jacq,Doris Calmo,Claire Tinel,Gilbert Zanetta,Jean-Michel Rebibou,Mathieu Legendre
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (7): 1741-1751 被引量:7
标识
DOI:10.1093/ndt/gfad039
摘要

Although the MEST-C classification is among the best prognostic tools in immunoglobulin A nephropathy (IgAN), it has a wide interobserver variability between specialized pathologists and others. Therefore we trained and evaluated a tool using a neural network to automate the MEST-C grading.Biopsies of patients with IgAN were divided into three independent groups: the Training cohort (n = 42) to train the network, the Test cohort (n = 66) to compare its pixel segmentation to that made by pathologists and the Application cohort (n = 88) to compare the MEST-C scores computed by the network or by pathologists.In the Test cohort, >73% of pixels were correctly identified by the network as M, E, S or C. In the Application cohort, the neural network area under the receiver operating characteristics curves were 0.88, 0.91, 0.88, 0.94, 0.96, 0.96 and 0.92 to predict M1, E1, S1, T1, T2, C1 and C2, respectively. The kappa coefficients between pathologists and the network assessments were substantial for E, S, T and C scores (kappa scores of 0.68, 0.79, 0.73 and 0.70, respectively) and moderate for M score (kappa score of 0.52). Network S and T scores were associated with the occurrence of the composite survival endpoint (death, dialysis, transplantation or doubling of serum creatinine) [hazard ratios 9.67 (P = .006) and 7.67 (P < .001), respectively].This work highlights the possibility of automated recognition and quantification of each element of the MEST-C classification using deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拼搏思卉发布了新的文献求助10
刚刚
1秒前
雨碎寒江完成签到,获得积分10
1秒前
2秒前
会飞的木头完成签到,获得积分10
2秒前
雪白涵山发布了新的文献求助20
2秒前
shouyu29应助MADKAI采纳,获得10
2秒前
Seiswan发布了新的文献求助10
2秒前
小小菜鸟完成签到,获得积分10
3秒前
3秒前
西西弗斯完成签到,获得积分10
3秒前
KT2440完成签到,获得积分10
4秒前
顾阿秀发布了新的文献求助10
4秒前
4秒前
4秒前
gnr2000完成签到,获得积分0
4秒前
5秒前
5秒前
BareBear应助赖道之采纳,获得10
5秒前
LEMON完成签到,获得积分10
5秒前
Ava应助buuyoo采纳,获得10
6秒前
情怀应助liuwei采纳,获得10
6秒前
aaefv完成签到,获得积分10
6秒前
小小菜鸟发布了新的文献求助10
6秒前
深情安青应助123采纳,获得10
6秒前
赫初晴完成签到 ,获得积分10
6秒前
平淡的亦丝应助明研采纳,获得20
6秒前
8秒前
库外发布了新的文献求助10
9秒前
汉堡包应助清新的冷松采纳,获得10
9秒前
从心应助LiShin采纳,获得10
9秒前
帅气的听莲完成签到,获得积分10
9秒前
英姑应助Areslcy采纳,获得10
9秒前
善学以致用应助zxz采纳,获得10
10秒前
whatever应助luoshi采纳,获得10
11秒前
11秒前
科研通AI5应助徐徐采纳,获得10
12秒前
shouyu29应助MADKAI采纳,获得10
12秒前
shouyu29应助MADKAI采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762