Deep learning automation of MEST-C classification in IgA nephropathy

医学 队列 卡帕 内科学 肾病 移植 危险系数 肌酐 接收机工作特性 人工智能 肾移植 糖尿病 计算机科学 置信区间 哲学 语言学 内分泌学
作者
Adrien Jaugey,Elise Maréchal,Georges Tarris,Michel Paindavoine,Laurent Martin,Melchior Chabannes,Mathilde Funes de la Vega,Mélanie Chaintreuil,Coline Robier,Didier Ducloux,Thomas Crépin,Sophie Félix,Amélie Jacq,Doris Calmo,Claire Tinel,Gilbert Zanetta,Jean-Michel Rebibou,Mathieu Legendre
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (7): 1741-1751 被引量:7
标识
DOI:10.1093/ndt/gfad039
摘要

Although the MEST-C classification is among the best prognostic tools in immunoglobulin A nephropathy (IgAN), it has a wide interobserver variability between specialized pathologists and others. Therefore we trained and evaluated a tool using a neural network to automate the MEST-C grading.Biopsies of patients with IgAN were divided into three independent groups: the Training cohort (n = 42) to train the network, the Test cohort (n = 66) to compare its pixel segmentation to that made by pathologists and the Application cohort (n = 88) to compare the MEST-C scores computed by the network or by pathologists.In the Test cohort, >73% of pixels were correctly identified by the network as M, E, S or C. In the Application cohort, the neural network area under the receiver operating characteristics curves were 0.88, 0.91, 0.88, 0.94, 0.96, 0.96 and 0.92 to predict M1, E1, S1, T1, T2, C1 and C2, respectively. The kappa coefficients between pathologists and the network assessments were substantial for E, S, T and C scores (kappa scores of 0.68, 0.79, 0.73 and 0.70, respectively) and moderate for M score (kappa score of 0.52). Network S and T scores were associated with the occurrence of the composite survival endpoint (death, dialysis, transplantation or doubling of serum creatinine) [hazard ratios 9.67 (P = .006) and 7.67 (P < .001), respectively].This work highlights the possibility of automated recognition and quantification of each element of the MEST-C classification using deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dding驳回了wu8577应助
刚刚
大模型应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得30
刚刚
Jasper应助积极的远山采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
卡卡西应助科研通管家采纳,获得20
刚刚
jkshijdj完成签到,获得积分10
1秒前
万能图书馆应助ABCofMEDICIBE采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
鲜艳的可愁完成签到,获得积分10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
菠萝炒饭应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
yui应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
卡卡西应助科研通管家采纳,获得20
1秒前
今后应助科研通管家采纳,获得10
1秒前
mengli完成签到 ,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
xzn1123应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
菠萝炒饭应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707