Intelligent prediction of acoustic performance of landing gear using deep learning

噪音(视频) 声学 流入 航程(航空) 起落架 声压 人工神经网络 感知器 环境噪声级 计算机科学 物理 人工智能 气象学 工程类 航空航天工程 图像(数学) 声音(地理)
作者
Yancong Zhang,Binnian Chen,Kun Zhao,Xiaolong Tang,Xiaoquan Yang,Guohui Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:9
标识
DOI:10.1063/5.0153890
摘要

Efficient prediction and evaluation of noise performance are crucial to the design and the optimization of landing gear noise. A systematic method is developed to predict and evaluate landing gear noise in the present study, termed as noise spectrum deep learning model (NSDL). In this algorithm, the encoder and decoder are designed to extract noise features and reconstruct noise data. Specifically, a loss function that takes the identification of both broadband noise and tone noise into account is utilized to guide the training direction of the model, aiming to improve the training efficiency and prediction results of the model. Afterward, the mapping relationship between landing gear experimental parameters and noise features is established by multi-layer perceptron. In this study, the detail of the algorithm is analyzed and discussed based on the results of wind tunnel noise experiment and numerical simulation. The results show that the proposed model can effectively and precisely predict landing gear noise under various conditions, including different flow speeds, angles of attack, number of wheels, and heights of the main strut. For the inflow velocity range of 34–75 m/s, the average error of the overall sound pressure level is restricted below 0.83% (0.6 dB). In case only the angle of attack is changed, the average error is reduced to be less than 0.36% (0.3 dB). The prediction results show that the landing gear noise is mainly broadband noise and tone noise mainly appears in the low frequency and intermediate frequency. With the increase in the inflow speed, the broadband noise increases gradually, and the frequency of tone noise gradually shifts to the high frequency band. Additionally, it is found that, for landing gear with four or six wheels, noise is very sensitive to angles of attack and wheel angles of attack. Consequently, the NSDL method shows significant potential in predicting the sound pressure level of landing gears and is expected to improve the efficiency of evaluation and optimization design for noise reduction of landing gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
CDreamY发布了新的文献求助10
1秒前
1秒前
小明完成签到,获得积分10
1秒前
gan发布了新的文献求助10
1秒前
王天宇发布了新的文献求助10
2秒前
无极微光应助石头采纳,获得20
2秒前
好人一生平安喵完成签到,获得积分10
2秒前
3秒前
开朗白山完成签到,获得积分10
3秒前
3秒前
科目三应助文静的海采纳,获得10
3秒前
mhpvv发布了新的文献求助10
4秒前
4秒前
汉堡包应助xueshulang采纳,获得10
4秒前
6秒前
Sylvia发布了新的文献求助30
6秒前
7秒前
123123发布了新的文献求助10
7秒前
研友_VZG7GZ应助777采纳,获得10
7秒前
苹果夜梦完成签到 ,获得积分10
7秒前
Czf完成签到 ,获得积分10
8秒前
飞快的梦山完成签到,获得积分10
9秒前
nenoaowu发布了新的文献求助10
9秒前
9秒前
ppyyg发布了新的文献求助10
9秒前
12秒前
12秒前
英姑应助五五乐采纳,获得10
12秒前
领导范儿应助我的小k8采纳,获得10
12秒前
星辰大海应助nenoaowu采纳,获得10
12秒前
queengause完成签到,获得积分10
13秒前
沉静丹寒发布了新的文献求助10
13秒前
mpshupi完成签到,获得积分10
13秒前
深情安青应助小化采纳,获得10
14秒前
zho应助等待冰之采纳,获得10
14秒前
奥特曼黑黑完成签到,获得积分10
14秒前
张三完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487