Intelligent prediction of acoustic performance of landing gear using deep learning

噪音(视频) 声学 流入 航程(航空) 起落架 声压 人工神经网络 感知器 环境噪声级 计算机科学 物理 人工智能 气象学 工程类 航空航天工程 声音(地理) 图像(数学)
作者
Yancong Zhang,Binnian Chen,Kun Zhao,Xiaolong Tang,Xiaoquan Yang,Guohui Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:8
标识
DOI:10.1063/5.0153890
摘要

Efficient prediction and evaluation of noise performance are crucial to the design and the optimization of landing gear noise. A systematic method is developed to predict and evaluate landing gear noise in the present study, termed as noise spectrum deep learning model (NSDL). In this algorithm, the encoder and decoder are designed to extract noise features and reconstruct noise data. Specifically, a loss function that takes the identification of both broadband noise and tone noise into account is utilized to guide the training direction of the model, aiming to improve the training efficiency and prediction results of the model. Afterward, the mapping relationship between landing gear experimental parameters and noise features is established by multi-layer perceptron. In this study, the detail of the algorithm is analyzed and discussed based on the results of wind tunnel noise experiment and numerical simulation. The results show that the proposed model can effectively and precisely predict landing gear noise under various conditions, including different flow speeds, angles of attack, number of wheels, and heights of the main strut. For the inflow velocity range of 34–75 m/s, the average error of the overall sound pressure level is restricted below 0.83% (0.6 dB). In case only the angle of attack is changed, the average error is reduced to be less than 0.36% (0.3 dB). The prediction results show that the landing gear noise is mainly broadband noise and tone noise mainly appears in the low frequency and intermediate frequency. With the increase in the inflow speed, the broadband noise increases gradually, and the frequency of tone noise gradually shifts to the high frequency band. Additionally, it is found that, for landing gear with four or six wheels, noise is very sensitive to angles of attack and wheel angles of attack. Consequently, the NSDL method shows significant potential in predicting the sound pressure level of landing gears and is expected to improve the efficiency of evaluation and optimization design for noise reduction of landing gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助果果采纳,获得10
刚刚
老神在在完成签到,获得积分10
刚刚
星辰大海应助断数循环采纳,获得10
1秒前
1秒前
小蘑菇应助性静H情逸采纳,获得10
1秒前
小呆呆完成签到 ,获得积分10
2秒前
2秒前
水煮牛肉完成签到,获得积分10
2秒前
2秒前
魁梧的笑阳完成签到 ,获得积分10
2秒前
HiDasiy完成签到 ,获得积分10
3秒前
3秒前
pariscxl完成签到,获得积分10
3秒前
田静然完成签到,获得积分10
3秒前
lieqiang发布了新的文献求助10
3秒前
柠柚萌不萌完成签到,获得积分10
4秒前
桥木有舟完成签到,获得积分10
4秒前
4秒前
晓凡发布了新的文献求助10
4秒前
欢喜的皮卡丘完成签到,获得积分10
5秒前
ZHAZHA完成签到,获得积分10
5秒前
5秒前
阿帆发布了新的文献求助10
5秒前
5秒前
5秒前
Jasper应助失眠的耳机采纳,获得10
6秒前
YingxueRen发布了新的文献求助10
6秒前
6秒前
彭于晏应助Steven采纳,获得10
6秒前
Jasper应助新司机采纳,获得10
6秒前
yayaya完成签到,获得积分10
6秒前
向阳完成签到,获得积分10
7秒前
杨枝修喵完成签到,获得积分10
8秒前
寒冷的孤云完成签到,获得积分20
8秒前
王佳豪完成签到,获得积分10
8秒前
whiteside完成签到,获得积分10
8秒前
moodys发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009668
求助须知:如何正确求助?哪些是违规求助? 3549638
关于积分的说明 11302957
捐赠科研通 3284181
什么是DOI,文献DOI怎么找? 1810535
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355