Intelligent prediction of acoustic performance of landing gear using deep learning

噪音(视频) 声学 流入 航程(航空) 起落架 声压 人工神经网络 感知器 环境噪声级 计算机科学 物理 人工智能 气象学 工程类 航空航天工程 声音(地理) 图像(数学)
作者
Yancong Zhang,Binnian Chen,Kun Zhao,Xiaolong Tang,Xiaoquan Yang,Guohui Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:4
标识
DOI:10.1063/5.0153890
摘要

Efficient prediction and evaluation of noise performance are crucial to the design and the optimization of landing gear noise. A systematic method is developed to predict and evaluate landing gear noise in the present study, termed as noise spectrum deep learning model (NSDL). In this algorithm, the encoder and decoder are designed to extract noise features and reconstruct noise data. Specifically, a loss function that takes the identification of both broadband noise and tone noise into account is utilized to guide the training direction of the model, aiming to improve the training efficiency and prediction results of the model. Afterward, the mapping relationship between landing gear experimental parameters and noise features is established by multi-layer perceptron. In this study, the detail of the algorithm is analyzed and discussed based on the results of wind tunnel noise experiment and numerical simulation. The results show that the proposed model can effectively and precisely predict landing gear noise under various conditions, including different flow speeds, angles of attack, number of wheels, and heights of the main strut. For the inflow velocity range of 34–75 m/s, the average error of the overall sound pressure level is restricted below 0.83% (0.6 dB). In case only the angle of attack is changed, the average error is reduced to be less than 0.36% (0.3 dB). The prediction results show that the landing gear noise is mainly broadband noise and tone noise mainly appears in the low frequency and intermediate frequency. With the increase in the inflow speed, the broadband noise increases gradually, and the frequency of tone noise gradually shifts to the high frequency band. Additionally, it is found that, for landing gear with four or six wheels, noise is very sensitive to angles of attack and wheel angles of attack. Consequently, the NSDL method shows significant potential in predicting the sound pressure level of landing gears and is expected to improve the efficiency of evaluation and optimization design for noise reduction of landing gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAN关闭了YAN文献求助
刚刚
杏花饼发布了新的文献求助10
刚刚
筱星完成签到,获得积分10
1秒前
aaaaa发布了新的文献求助10
1秒前
宇文宛菡发布了新的文献求助10
1秒前
jacky完成签到,获得积分10
1秒前
司徒迎曼发布了新的文献求助10
1秒前
1秒前
启航完成签到,获得积分10
1秒前
2秒前
笋蒸鱼完成签到,获得积分10
2秒前
liutaili发布了新的文献求助10
2秒前
2秒前
睡到人间煮饭时完成签到,获得积分10
2秒前
3秒前
清澈水眸完成签到 ,获得积分10
3秒前
圈圈发布了新的文献求助10
3秒前
zhanlonglsj关注了科研通微信公众号
3秒前
缥缈的万天完成签到 ,获得积分10
4秒前
木禾火发布了新的文献求助10
4秒前
4秒前
4秒前
May完成签到,获得积分10
4秒前
爱静静应助忧郁凌波采纳,获得10
5秒前
Maestro_S发布了新的文献求助10
5秒前
乾坤完成签到,获得积分10
5秒前
6秒前
WxChen完成签到,获得积分10
6秒前
椰子发布了新的文献求助10
6秒前
WJ发布了新的文献求助10
7秒前
xhuryts完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
7秒前
徐翩跹完成签到,获得积分10
8秒前
不喝可乐发布了新的文献求助10
8秒前
Dream完成签到,获得积分10
8秒前
科研通AI5应助F冯采纳,获得10
8秒前
感谢大哥的帮助完成签到 ,获得积分10
8秒前
qiongqiong完成签到,获得积分10
8秒前
米娅完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740