亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent prediction of acoustic performance of landing gear using deep learning

噪音(视频) 声学 流入 航程(航空) 起落架 声压 人工神经网络 感知器 环境噪声级 计算机科学 物理 人工智能 气象学 工程类 航空航天工程 图像(数学) 声音(地理)
作者
Yancong Zhang,Binnian Chen,Kun Zhao,Xiaolong Tang,Xiaoquan Yang,Guohui Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:9
标识
DOI:10.1063/5.0153890
摘要

Efficient prediction and evaluation of noise performance are crucial to the design and the optimization of landing gear noise. A systematic method is developed to predict and evaluate landing gear noise in the present study, termed as noise spectrum deep learning model (NSDL). In this algorithm, the encoder and decoder are designed to extract noise features and reconstruct noise data. Specifically, a loss function that takes the identification of both broadband noise and tone noise into account is utilized to guide the training direction of the model, aiming to improve the training efficiency and prediction results of the model. Afterward, the mapping relationship between landing gear experimental parameters and noise features is established by multi-layer perceptron. In this study, the detail of the algorithm is analyzed and discussed based on the results of wind tunnel noise experiment and numerical simulation. The results show that the proposed model can effectively and precisely predict landing gear noise under various conditions, including different flow speeds, angles of attack, number of wheels, and heights of the main strut. For the inflow velocity range of 34–75 m/s, the average error of the overall sound pressure level is restricted below 0.83% (0.6 dB). In case only the angle of attack is changed, the average error is reduced to be less than 0.36% (0.3 dB). The prediction results show that the landing gear noise is mainly broadband noise and tone noise mainly appears in the low frequency and intermediate frequency. With the increase in the inflow speed, the broadband noise increases gradually, and the frequency of tone noise gradually shifts to the high frequency band. Additionally, it is found that, for landing gear with four or six wheels, noise is very sensitive to angles of attack and wheel angles of attack. Consequently, the NSDL method shows significant potential in predicting the sound pressure level of landing gears and is expected to improve the efficiency of evaluation and optimization design for noise reduction of landing gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21度多云完成签到,获得积分10
4秒前
10秒前
trophozoite完成签到 ,获得积分10
21秒前
24秒前
橘子发布了新的文献求助10
32秒前
qiuqiu完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
40秒前
SCIfafafafa发布了新的文献求助10
45秒前
hua完成签到,获得积分10
47秒前
于是乎完成签到 ,获得积分10
50秒前
bkagyin应助大力的图图采纳,获得10
51秒前
所所应助SCIfafafafa采纳,获得10
56秒前
LZR发布了新的文献求助10
1分钟前
科目三应助迅速初柳采纳,获得10
1分钟前
个木完成签到,获得积分10
1分钟前
1分钟前
yanglinhai完成签到 ,获得积分10
1分钟前
慕青应助可靠的寒风采纳,获得10
1分钟前
luckydog发布了新的文献求助10
1分钟前
1分钟前
eclo完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
周墨完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qiuqiu发布了新的文献求助10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
追寻夜香完成签到 ,获得积分10
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
平安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
快乐若云应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746419
求助须知:如何正确求助?哪些是违规求助? 5434098
关于积分的说明 15355366
捐赠科研通 4886387
什么是DOI,文献DOI怎么找? 2627215
邀请新用户注册赠送积分活动 1575696
关于科研通互助平台的介绍 1532425