Intelligent prediction of acoustic performance of landing gear using deep learning

噪音(视频) 声学 流入 航程(航空) 起落架 声压 人工神经网络 感知器 环境噪声级 计算机科学 物理 人工智能 气象学 工程类 航空航天工程 图像(数学) 声音(地理)
作者
Yancong Zhang,Binnian Chen,Kun Zhao,Xiaolong Tang,Xiaoquan Yang,Guohui Hu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:9
标识
DOI:10.1063/5.0153890
摘要

Efficient prediction and evaluation of noise performance are crucial to the design and the optimization of landing gear noise. A systematic method is developed to predict and evaluate landing gear noise in the present study, termed as noise spectrum deep learning model (NSDL). In this algorithm, the encoder and decoder are designed to extract noise features and reconstruct noise data. Specifically, a loss function that takes the identification of both broadband noise and tone noise into account is utilized to guide the training direction of the model, aiming to improve the training efficiency and prediction results of the model. Afterward, the mapping relationship between landing gear experimental parameters and noise features is established by multi-layer perceptron. In this study, the detail of the algorithm is analyzed and discussed based on the results of wind tunnel noise experiment and numerical simulation. The results show that the proposed model can effectively and precisely predict landing gear noise under various conditions, including different flow speeds, angles of attack, number of wheels, and heights of the main strut. For the inflow velocity range of 34–75 m/s, the average error of the overall sound pressure level is restricted below 0.83% (0.6 dB). In case only the angle of attack is changed, the average error is reduced to be less than 0.36% (0.3 dB). The prediction results show that the landing gear noise is mainly broadband noise and tone noise mainly appears in the low frequency and intermediate frequency. With the increase in the inflow speed, the broadband noise increases gradually, and the frequency of tone noise gradually shifts to the high frequency band. Additionally, it is found that, for landing gear with four or six wheels, noise is very sensitive to angles of attack and wheel angles of attack. Consequently, the NSDL method shows significant potential in predicting the sound pressure level of landing gears and is expected to improve the efficiency of evaluation and optimization design for noise reduction of landing gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助唐盼烟采纳,获得10
1秒前
1秒前
2秒前
lll发布了新的文献求助10
2秒前
嘻嘻哈哈发布了新的文献求助10
2秒前
酸奶花生发布了新的文献求助10
3秒前
3秒前
苹果南烟完成签到,获得积分10
4秒前
4秒前
5秒前
mustead发布了新的文献求助10
6秒前
obsession发布了新的文献求助10
8秒前
9秒前
现代小丸子完成签到 ,获得积分10
9秒前
搜集达人应助suiting采纳,获得10
10秒前
小羊摸鱼关注了科研通微信公众号
11秒前
陈明甫发布了新的文献求助10
12秒前
www发布了新的文献求助10
12秒前
12秒前
善学以致用应助大胆隶采纳,获得10
13秒前
小小发布了新的文献求助30
14秒前
呼呼呼完成签到,获得积分10
14秒前
李健的小迷弟应助celeste采纳,获得10
14秒前
所所应助lll采纳,获得10
16秒前
幽默千柔发布了新的文献求助10
17秒前
Akim应助lejunia采纳,获得10
19秒前
19秒前
lll完成签到,获得积分20
23秒前
完美世界应助靴肥肥采纳,获得10
25秒前
断章发布了新的文献求助10
25秒前
香蕉觅云应助Cindy采纳,获得10
26秒前
26秒前
27秒前
隐形曼青应助妮多采纳,获得10
28秒前
代杰居然发布了新的文献求助10
28秒前
mustead完成签到,获得积分10
29秒前
29秒前
坦率灵槐应助故意的若风采纳,获得10
29秒前
yuyu完成签到,获得积分10
30秒前
姜姜研发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309595
求助须知:如何正确求助?哪些是违规求助? 4454149
关于积分的说明 13859390
捐赠科研通 4342109
什么是DOI,文献DOI怎么找? 2384337
邀请新用户注册赠送积分活动 1378821
关于科研通互助平台的介绍 1346965