Next-Generation Models for Predicting Winning Times in Elite Swimming Events: Updated Predictions for the Paris 2024 Olympic Games

奖章 事件(粒子物理) 贝叶斯概率 线性回归 比赛比赛 排名(信息检索) 运动员 统计 计算机科学 计量经济学 运筹学 机器学习 人工智能 数学 地理 医学 物理 物理疗法 考古 量子力学
作者
Iñigo Mujika,David B. Pyne,Paul Wu,Kwok Ng,Emmet Crowley,Cormac Powell
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:18 (11): 1269-1274 被引量:8
标识
DOI:10.1123/ijspp.2023-0174
摘要

To evaluate statistical models developed for predicting medal-winning performances for international swimming events and generate updated performance predictions for the Paris 2024 Olympic Games.The performance of 2 statistical models developed for predicting international swimming performances was evaluated. The first model employed linear regression and forecasting to examine performance trends among medal winners, finalists, and semifinalists over an 8-year period. A machine-learning algorithm was used to generate time predictions for each individual event for the Paris 2024 Olympic Games. The second model was a Bayesian framework and comprised an autoregressive term (the previous winning time), moving average (past 3 events), and covariates for stroke, gender, distance, and type of event (World Championships vs Olympic Games). To examine the accuracy of the predictions from both models, the mean absolute error was determined between the predicted times for the Budapest 2022 World Championships and the actual results from said championships.The mean absolute error for prediction of swimming performances was 0.80% for the linear-regression machine-learning model and 0.85% for the Bayesian model. The predicted times and actual times from the Budapest 2022 World Championships were highly correlated (r = .99 for both approaches).These models, and associated predictions for swimming events at the Paris 2024 Olympic Games, provide an evidence-based performance framework for coaches, sport-science support staff, and athletes to develop and evaluate training plans, strategies, and tactics, as well as informing resource allocation to athletes, based on their potential for the Paris 2024 Olympic Games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
傅飞风发布了新的文献求助10
2秒前
舒心的怜翠完成签到 ,获得积分10
3秒前
斯文的苡完成签到,获得积分10
6秒前
wangkun090121发布了新的文献求助10
6秒前
6秒前
6秒前
包容汉堡完成签到 ,获得积分10
7秒前
7秒前
Akim应助摸鱼采纳,获得10
11秒前
管理想发布了新的文献求助10
11秒前
nice1025完成签到,获得积分10
12秒前
无敌反派大美人应助Eunhyo采纳,获得10
12秒前
紫米完成签到,获得积分10
13秒前
碗千岁发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
16秒前
nan完成签到,获得积分10
16秒前
lss完成签到 ,获得积分10
18秒前
18秒前
yu完成签到 ,获得积分10
18秒前
Xing发布了新的文献求助10
19秒前
19秒前
青雪完成签到,获得积分10
20秒前
Jaxine完成签到 ,获得积分10
20秒前
123456完成签到,获得积分10
22秒前
22秒前
23秒前
华仔应助笑点低的傲白采纳,获得10
23秒前
流水z完成签到,获得积分10
23秒前
橙子完成签到,获得积分10
24秒前
du完成签到 ,获得积分10
24秒前
田様应助细心的绿竹采纳,获得10
24秒前
领导范儿应助Xing采纳,获得10
24秒前
Lyn完成签到 ,获得积分10
25秒前
26秒前
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358826
求助须知:如何正确求助?哪些是违规求助? 2981909
关于积分的说明 8701218
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196