Next-Generation Models for Predicting Winning Times in Elite Swimming Events: Updated Predictions for the Paris 2024 Olympic Games

奖章 事件(粒子物理) 贝叶斯概率 线性回归 比赛比赛 排名(信息检索) 运动员 统计 计算机科学 计量经济学 运筹学 机器学习 人工智能 数学 地理 医学 物理 物理疗法 考古 量子力学
作者
Iñigo Mujika,David B. Pyne,Paul Wu,Kwok Ng,Emmet Crowley,Cormac Powell
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:18 (11): 1269-1274 被引量:8
标识
DOI:10.1123/ijspp.2023-0174
摘要

To evaluate statistical models developed for predicting medal-winning performances for international swimming events and generate updated performance predictions for the Paris 2024 Olympic Games.The performance of 2 statistical models developed for predicting international swimming performances was evaluated. The first model employed linear regression and forecasting to examine performance trends among medal winners, finalists, and semifinalists over an 8-year period. A machine-learning algorithm was used to generate time predictions for each individual event for the Paris 2024 Olympic Games. The second model was a Bayesian framework and comprised an autoregressive term (the previous winning time), moving average (past 3 events), and covariates for stroke, gender, distance, and type of event (World Championships vs Olympic Games). To examine the accuracy of the predictions from both models, the mean absolute error was determined between the predicted times for the Budapest 2022 World Championships and the actual results from said championships.The mean absolute error for prediction of swimming performances was 0.80% for the linear-regression machine-learning model and 0.85% for the Bayesian model. The predicted times and actual times from the Budapest 2022 World Championships were highly correlated (r = .99 for both approaches).These models, and associated predictions for swimming events at the Paris 2024 Olympic Games, provide an evidence-based performance framework for coaches, sport-science support staff, and athletes to develop and evaluate training plans, strategies, and tactics, as well as informing resource allocation to athletes, based on their potential for the Paris 2024 Olympic Games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanhuan完成签到,获得积分10
1秒前
小刘不笨完成签到,获得积分10
1秒前
吕绪特完成签到 ,获得积分10
1秒前
2秒前
愉快的夏菡完成签到,获得积分10
2秒前
研友_gnv61n完成签到,获得积分10
2秒前
zmy完成签到,获得积分10
2秒前
小蘑菇应助守约采纳,获得10
3秒前
3秒前
空白发布了新的文献求助10
4秒前
buno应助721采纳,获得20
4秒前
石阶上完成签到 ,获得积分10
4秒前
du完成签到 ,获得积分10
4秒前
Xu完成签到,获得积分10
5秒前
mmmm完成签到,获得积分10
5秒前
5秒前
情怀应助YY采纳,获得10
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
Akim应助xiaokezhang采纳,获得10
6秒前
6秒前
柠木完成签到 ,获得积分10
6秒前
系统提示发布了新的文献求助10
6秒前
marigold完成签到,获得积分10
6秒前
Gaoge完成签到,获得积分10
7秒前
愉快的无招完成签到,获得积分10
7秒前
7秒前
HEIKU应助习习采纳,获得10
8秒前
8秒前
8秒前
8秒前
合适苗条完成签到,获得积分10
8秒前
Zn应助开水泡饼采纳,获得10
8秒前
科目三应助Liu采纳,获得10
9秒前
9秒前
eating完成签到,获得积分10
9秒前
李双艳完成签到,获得积分10
9秒前
英姑应助科研混子采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
Hungrylunch应助woshiwuziq采纳,获得20
11秒前
合适苗条发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678