Next-Generation Models for Predicting Winning Times in Elite Swimming Events: Updated Predictions for the Paris 2024 Olympic Games

奖章 事件(粒子物理) 贝叶斯概率 线性回归 比赛比赛 排名(信息检索) 运动员 统计 计算机科学 计量经济学 运筹学 机器学习 人工智能 数学 地理 考古 物理 医学 量子力学 物理疗法
作者
Iñigo Mujika,David B. Pyne,Paul Wu,Kwok Ng,Emmet Crowley,Cormac Powell
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:18 (11): 1269-1274 被引量:8
标识
DOI:10.1123/ijspp.2023-0174
摘要

To evaluate statistical models developed for predicting medal-winning performances for international swimming events and generate updated performance predictions for the Paris 2024 Olympic Games.The performance of 2 statistical models developed for predicting international swimming performances was evaluated. The first model employed linear regression and forecasting to examine performance trends among medal winners, finalists, and semifinalists over an 8-year period. A machine-learning algorithm was used to generate time predictions for each individual event for the Paris 2024 Olympic Games. The second model was a Bayesian framework and comprised an autoregressive term (the previous winning time), moving average (past 3 events), and covariates for stroke, gender, distance, and type of event (World Championships vs Olympic Games). To examine the accuracy of the predictions from both models, the mean absolute error was determined between the predicted times for the Budapest 2022 World Championships and the actual results from said championships.The mean absolute error for prediction of swimming performances was 0.80% for the linear-regression machine-learning model and 0.85% for the Bayesian model. The predicted times and actual times from the Budapest 2022 World Championships were highly correlated (r = .99 for both approaches).These models, and associated predictions for swimming events at the Paris 2024 Olympic Games, provide an evidence-based performance framework for coaches, sport-science support staff, and athletes to develop and evaluate training plans, strategies, and tactics, as well as informing resource allocation to athletes, based on their potential for the Paris 2024 Olympic Games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Radisson完成签到,获得积分10
3秒前
小马甲应助结实的XMZ采纳,获得10
6秒前
经卿完成签到 ,获得积分10
9秒前
噢耶完成签到,获得积分10
9秒前
leo完成签到,获得积分10
10秒前
10秒前
鉴湖完成签到,获得积分10
16秒前
萧东辰完成签到,获得积分10
19秒前
故渊丶完成签到 ,获得积分10
24秒前
swordshine完成签到,获得积分0
24秒前
一颗酒窝完成签到 ,获得积分10
25秒前
Will完成签到,获得积分10
29秒前
QAQSS完成签到 ,获得积分10
29秒前
乔凌云完成签到 ,获得积分10
30秒前
btcat完成签到,获得积分0
33秒前
帆320完成签到,获得积分10
34秒前
笨笨摇伽完成签到,获得积分10
35秒前
浮尘完成签到 ,获得积分0
36秒前
燕晓啸完成签到 ,获得积分0
36秒前
轴承完成签到 ,获得积分10
37秒前
液晶屏99完成签到,获得积分10
38秒前
魔幻的早晨完成签到,获得积分10
40秒前
skyspume发布了新的文献求助10
42秒前
grace完成签到 ,获得积分10
44秒前
一粟的粉r完成签到 ,获得积分10
50秒前
尼古拉耶维奇完成签到,获得积分10
50秒前
wait完成签到,获得积分10
51秒前
雪落你看不见完成签到,获得积分10
53秒前
派出所110完成签到 ,获得积分10
55秒前
55秒前
muzi完成签到,获得积分10
56秒前
楚寅完成签到 ,获得积分10
58秒前
skyspume完成签到,获得积分10
59秒前
Wang发布了新的文献求助10
1分钟前
苦咖啡行僧完成签到 ,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
jiaqi应助laiwai采纳,获得50
1分钟前
1分钟前
1分钟前
芳芳子呀完成签到,获得积分10
1分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387278
求助须知:如何正确求助?哪些是违规求助? 4509381
关于积分的说明 14030918
捐赠科研通 4419966
什么是DOI,文献DOI怎么找? 2428001
邀请新用户注册赠送积分活动 1420653
关于科研通互助平台的介绍 1399767