Next-Generation Models for Predicting Winning Times in Elite Swimming Events: Updated Predictions for the Paris 2024 Olympic Games

奖章 事件(粒子物理) 贝叶斯概率 线性回归 比赛比赛 排名(信息检索) 运动员 统计 计算机科学 计量经济学 运筹学 机器学习 人工智能 数学 地理 考古 物理 医学 量子力学 物理疗法
作者
Iñigo Mujika,David B. Pyne,Paul Wu,Kwok Ng,Emmet Crowley,Cormac Powell
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:18 (11): 1269-1274 被引量:8
标识
DOI:10.1123/ijspp.2023-0174
摘要

To evaluate statistical models developed for predicting medal-winning performances for international swimming events and generate updated performance predictions for the Paris 2024 Olympic Games.The performance of 2 statistical models developed for predicting international swimming performances was evaluated. The first model employed linear regression and forecasting to examine performance trends among medal winners, finalists, and semifinalists over an 8-year period. A machine-learning algorithm was used to generate time predictions for each individual event for the Paris 2024 Olympic Games. The second model was a Bayesian framework and comprised an autoregressive term (the previous winning time), moving average (past 3 events), and covariates for stroke, gender, distance, and type of event (World Championships vs Olympic Games). To examine the accuracy of the predictions from both models, the mean absolute error was determined between the predicted times for the Budapest 2022 World Championships and the actual results from said championships.The mean absolute error for prediction of swimming performances was 0.80% for the linear-regression machine-learning model and 0.85% for the Bayesian model. The predicted times and actual times from the Budapest 2022 World Championships were highly correlated (r = .99 for both approaches).These models, and associated predictions for swimming events at the Paris 2024 Olympic Games, provide an evidence-based performance framework for coaches, sport-science support staff, and athletes to develop and evaluate training plans, strategies, and tactics, as well as informing resource allocation to athletes, based on their potential for the Paris 2024 Olympic Games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖宛筠完成签到,获得积分10
刚刚
小欣6116完成签到,获得积分10
1秒前
请叫我风吹麦浪应助冬月采纳,获得10
1秒前
LIUYONG发布了新的文献求助10
2秒前
2秒前
肖雪依完成签到,获得积分10
2秒前
影子完成签到,获得积分10
3秒前
4秒前
晨珂完成签到,获得积分10
4秒前
Florencia发布了新的文献求助10
6秒前
xiezhuochun发布了新的文献求助10
7秒前
7秒前
同瓜不同命完成签到,获得积分10
9秒前
牛马哥发布了新的文献求助10
10秒前
温婉的松鼠完成签到,获得积分10
10秒前
11秒前
辛勤的寄瑶完成签到,获得积分10
11秒前
Lauren完成签到 ,获得积分10
12秒前
13秒前
忆枫完成签到,获得积分10
17秒前
炒鸡小将发布了新的文献求助10
17秒前
花壳在逃野猪完成签到 ,获得积分10
17秒前
17秒前
银子吃好的完成签到,获得积分10
18秒前
西瓜霜完成签到 ,获得积分10
18秒前
科研废物完成签到 ,获得积分10
20秒前
冬月完成签到,获得积分10
20秒前
20秒前
马东完成签到,获得积分10
22秒前
搜集达人应助动听的秋白采纳,获得10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
华仔应助炒鸡小将采纳,获得10
24秒前
chizhi完成签到,获得积分10
24秒前
雪雨夜心应助白智妍采纳,获得10
25秒前
祁乐安发布了新的文献求助20
26秒前
fang应助科研通管家采纳,获得10
27秒前
梵高的向日葵完成签到,获得积分10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
清爽的碧空完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029