已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:92
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcmlida完成签到,获得积分10
1秒前
刘雪完成签到 ,获得积分10
4秒前
4秒前
小雨完成签到,获得积分10
4秒前
冷艳海秋完成签到 ,获得积分10
7秒前
lllllnnnnj完成签到,获得积分10
10秒前
10秒前
哈密哈密完成签到,获得积分10
10秒前
冷艳海秋发布了新的文献求助10
12秒前
早岁完成签到,获得积分10
13秒前
13秒前
JacekYu完成签到 ,获得积分10
14秒前
pe发布了新的文献求助10
15秒前
opticsLM完成签到,获得积分10
19秒前
LeoBigman完成签到 ,获得积分10
19秒前
19秒前
阿俊1212完成签到,获得积分20
21秒前
23秒前
土拨鼠完成签到 ,获得积分10
24秒前
tosania发布了新的文献求助10
26秒前
29秒前
专注的寒香关注了科研通微信公众号
34秒前
34秒前
耶耶完成签到 ,获得积分10
38秒前
Stormi发布了新的文献求助10
38秒前
42秒前
小马甲应助尊敬寒松采纳,获得10
44秒前
quan发布了新的文献求助10
47秒前
王晓静完成签到 ,获得积分10
47秒前
48秒前
48秒前
龙骑士25完成签到 ,获得积分10
49秒前
Hiram完成签到,获得积分10
49秒前
调皮的灰狼完成签到,获得积分10
50秒前
53秒前
read发布了新的文献求助10
54秒前
寒冷的应助满意语风采纳,获得10
57秒前
落尘府完成签到,获得积分10
59秒前
read完成签到,获得积分10
1分钟前
quan完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994745
求助须知:如何正确求助?哪些是违规求助? 3534958
关于积分的说明 11266887
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762