Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:98
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江潇完成签到,获得积分10
1秒前
wkwwkwkwk完成签到 ,获得积分10
2秒前
可yi完成签到,获得积分10
3秒前
金条完成签到,获得积分10
3秒前
杜妤涵完成签到,获得积分10
4秒前
漂亮的若颜完成签到 ,获得积分10
4秒前
CFSJ完成签到,获得积分10
6秒前
110完成签到,获得积分10
6秒前
7秒前
流星雨完成签到 ,获得积分10
7秒前
w020507完成签到,获得积分10
9秒前
会飞的流氓兔完成签到 ,获得积分10
9秒前
zcious完成签到,获得积分10
12秒前
刘钱美子完成签到,获得积分10
13秒前
anan完成签到 ,获得积分10
13秒前
李_完成签到,获得积分10
14秒前
wanmiao12完成签到,获得积分10
14秒前
万松辉完成签到,获得积分10
16秒前
K13完成签到,获得积分10
17秒前
18秒前
Ava应助黄卡人采纳,获得10
19秒前
冷静铅笔完成签到,获得积分10
19秒前
小二郎应助笑傲江湖采纳,获得20
19秒前
小二郎应助xmyyy采纳,获得10
19秒前
邓桂灿发布了新的文献求助20
21秒前
21秒前
22秒前
景时完成签到,获得积分10
22秒前
边边角角落落完成签到 ,获得积分20
22秒前
by完成签到,获得积分10
23秒前
陈老太完成签到 ,获得积分10
24秒前
边边角角落落关注了科研通微信公众号
24秒前
26秒前
26秒前
酷酷煎饼完成签到,获得积分10
27秒前
君子扑火完成签到,获得积分10
27秒前
小抱枕发布了新的文献求助10
27秒前
zxt完成签到 ,获得积分10
27秒前
xmyyy完成签到,获得积分10
28秒前
lagom完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532