亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:92
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Koala04完成签到,获得积分10
32秒前
36秒前
cy0824完成签到 ,获得积分10
38秒前
飞快的孱发布了新的文献求助10
42秒前
1分钟前
jitianxing发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI5应助jitianxing采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
forest完成签到,获得积分10
4分钟前
4分钟前
jitianxing发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
5分钟前
无幻完成签到 ,获得积分10
5分钟前
松松完成签到 ,获得积分10
5分钟前
5分钟前
CES_SH完成签到,获得积分10
5分钟前
数乱了梨花完成签到 ,获得积分0
5分钟前
已知中的未知完成签到 ,获得积分10
5分钟前
6分钟前
袁梦发布了新的文献求助10
6分钟前
科研通AI6应助袁梦采纳,获得10
6分钟前
上官若男应助马良采纳,获得10
6分钟前
贰鸟完成签到,获得积分0
6分钟前
7分钟前
科研通AI5应助jitianxing采纳,获得10
7分钟前
马良发布了新的文献求助10
7分钟前
7分钟前
花落无声完成签到 ,获得积分10
7分钟前
jitianxing发布了新的文献求助10
7分钟前
jitianxing完成签到,获得积分20
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
科研通AI5应助jitianxing采纳,获得10
8分钟前
沉默白桃完成签到 ,获得积分10
9分钟前
感动清炎完成签到,获得积分10
9分钟前
Ava应助oleskarabach采纳,获得10
9分钟前
11分钟前
领导范儿应助gszy1975采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069