Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:88
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
解青文完成签到,获得积分10
1秒前
猪猪hero应助18325840230采纳,获得10
3秒前
健忘曼彤发布了新的文献求助10
4秒前
5秒前
我艾吃饭发布了新的文献求助10
6秒前
4311发布了新的文献求助20
7秒前
xunmacaoyan发布了新的文献求助10
7秒前
佩奇发布了新的文献求助20
7秒前
8秒前
铅笔完成签到,获得积分10
9秒前
KEHUGE完成签到,获得积分10
9秒前
共享精神应助左右不为难采纳,获得10
11秒前
12秒前
SciGPT应助大气的妙松采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
研友_Z7mkRL发布了新的文献求助10
15秒前
16秒前
16秒前
打打应助DAYTOY采纳,获得10
16秒前
炎星语发布了新的文献求助10
17秒前
虎虎虎虎发布了新的文献求助10
17秒前
canjian1943完成签到,获得积分10
18秒前
称心蓉发布了新的文献求助10
18秒前
稳重海豚发布了新的文献求助10
19秒前
碎月发布了新的文献求助10
20秒前
研友_P85MX8发布了新的文献求助10
22秒前
22秒前
Pixie发布了新的文献求助10
22秒前
奥利奥发布了新的文献求助10
23秒前
28秒前
酷波er应助碎月采纳,获得10
29秒前
lxz完成签到,获得积分10
30秒前
阿宝发布了新的文献求助10
31秒前
32秒前
田様应助苏言采纳,获得10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
The Oxford Handbook of Educational Psychology 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416865
求助须知:如何正确求助?哪些是违规求助? 3018696
关于积分的说明 8884757
捐赠科研通 2705908
什么是DOI,文献DOI怎么找? 1483978
科研通“疑难数据库(出版商)”最低求助积分说明 685860
邀请新用户注册赠送积分活动 681063