Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:98
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dlwlrma完成签到,获得积分20
刚刚
刚刚
仇悦发布了新的文献求助10
1秒前
NEO发布了新的文献求助10
1秒前
Rjy发布了新的文献求助10
1秒前
1秒前
天下无双完成签到,获得积分20
2秒前
dd完成签到,获得积分20
2秒前
zk完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
wondor1111发布了新的文献求助30
3秒前
3秒前
李健应助大大博格采纳,获得10
3秒前
4秒前
4秒前
4秒前
阳光胜完成签到,获得积分10
5秒前
qinggui127完成签到 ,获得积分10
5秒前
PP完成签到,获得积分10
5秒前
Whale发布了新的文献求助10
6秒前
小孩发布了新的文献求助10
6秒前
6秒前
天下无双发布了新的文献求助10
7秒前
Dlwlrma发布了新的文献求助10
7秒前
清清关注了科研通微信公众号
7秒前
hanqun1111应助淡定的笙采纳,获得30
8秒前
sulyspr完成签到,获得积分10
8秒前
传奇3应助blue采纳,获得10
8秒前
景宛白发布了新的文献求助10
8秒前
自然的初丹完成签到,获得积分10
9秒前
刘锰发布了新的文献求助10
9秒前
MiriamYu完成签到,获得积分10
9秒前
yyy发布了新的文献求助10
10秒前
Rui_Rui发布了新的文献求助10
10秒前
D方完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396463
求助须知:如何正确求助?哪些是违规求助? 4516911
关于积分的说明 14061661
捐赠科研通 4428761
什么是DOI,文献DOI怎么找? 2432173
邀请新用户注册赠送积分活动 1424493
关于科研通互助平台的介绍 1403617