Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:98
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥润之完成签到,获得积分10
1秒前
1秒前
蓝天发布了新的文献求助10
1秒前
Ellie完成签到 ,获得积分10
1秒前
Liu发布了新的文献求助10
2秒前
可爱滴小花花完成签到,获得积分10
2秒前
人生若只如初见完成签到,获得积分10
2秒前
慕青应助隐形饼干采纳,获得10
2秒前
3秒前
平常安雁完成签到 ,获得积分10
3秒前
何公主完成签到 ,获得积分10
4秒前
MW发布了新的文献求助10
4秒前
完美世界应助Ting采纳,获得10
4秒前
天天快乐应助LIUDEHUA采纳,获得10
4秒前
所所应助人生若只如初见采纳,获得10
7秒前
这个大头张呀完成签到,获得积分10
9秒前
1212完成签到 ,获得积分10
9秒前
10秒前
10秒前
可爱的函函应助Ting采纳,获得10
11秒前
iqa发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
LS完成签到,获得积分10
12秒前
13秒前
maomao1986完成签到,获得积分10
14秒前
14秒前
15秒前
星月发布了新的文献求助10
15秒前
xiaoxiao发布了新的文献求助30
16秒前
17秒前
香蕉觅云应助不吃香菜采纳,获得10
17秒前
壮观觅柔完成签到,获得积分10
17秒前
woshigantang发布了新的文献求助10
17秒前
苏暮雨完成签到,获得积分20
18秒前
迷人不凡完成签到,获得积分10
18秒前
应急食品发布了新的文献求助10
18秒前
19秒前
曹中明发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539529
求助须知:如何正确求助?哪些是违规求助? 4626284
关于积分的说明 14598639
捐赠科研通 4567154
什么是DOI,文献DOI怎么找? 2503878
邀请新用户注册赠送积分活动 1481639
关于科研通互助平台的介绍 1453250