Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China

碳纤维 温室气体 环境科学 还原(数学) 土地利用 固碳 环境工程 计算机科学 工程类 二氧化碳 土木工程 数学 算法 生态学 生物 复合数 几何学
作者
Haizhi Luo,Yingyue Li,Xinyu Gao,Xiangzhao Meng,Xiaohu Yang,Jinyue Yan
出处
期刊:Applied Energy [Elsevier]
卷期号:348: 121488-121488 被引量:35
标识
DOI:10.1016/j.apenergy.2023.121488
摘要

Climate change has become a global concern, and the prediction of carbon emissions is key to achieving carbon-reduction goals. The existing framework cannot accurately reflect the spatial distribution of carbon emissions, making it difficult to guide urban planning and management. Therefore, in this study, a carbon emission spatial simulation and prediction model was established. The model includes the GIS-Kernel Density sub-model for subdividing built-up area, the Land Use-Carbon Emission sub-model for establishing the correlation between land use and carbon emissions, the Multi Objective Programming-Principal Component Analysis-BP neural network sub-model for presetting development scenarios, and the Patch-generating Land-use Simulation sub-model for predicting. Xi'an was chosen as the study site, and two extreme scenarios were determined. A total of 373,318 development paths were segmented from the interval, and the optimal path was selected. All scenarios were simulated, and the carbon emissions and their spatial distribution were calculated. The results showed that the overall accuracy of the simulation exceeded 90%. Under the optimal path, Xi'an's carbon emissions reach 60.6 million tons at peak time, which will be reduced to 47.38 million tons by 2060. In addition, the model analyzed the temporal and spatial changes of carbon sources and sinks and drew up the path of carbon reduction by technology and urban planning. This model can provide a reference for regional carbon-reduction planning and carbon reduction technology implantation. It can propose strategies from the perspective of planning and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助明柯采纳,获得30
1秒前
lyz发布了新的文献求助10
2秒前
2秒前
旺仔完成签到,获得积分10
2秒前
科研通AI2S应助朝阳采纳,获得10
3秒前
3秒前
4秒前
5秒前
陈龙发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
75986686发布了新的文献求助10
9秒前
CatherineRR完成签到,获得积分10
10秒前
共享精神应助Eden采纳,获得10
10秒前
萌兰134发布了新的文献求助20
10秒前
10秒前
10秒前
小二郎应助专一的书雪采纳,获得10
11秒前
Ivory发布了新的文献求助10
11秒前
大气建辉发布了新的文献求助10
12秒前
ruhua发布了新的文献求助10
13秒前
14秒前
14秒前
Mint发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
12123发布了新的文献求助10
16秒前
自信搬砖发布了新的文献求助10
17秒前
lyz完成签到,获得积分10
17秒前
LingZhang发布了新的文献求助10
18秒前
miller完成签到,获得积分10
18秒前
北极光发布了新的文献求助10
18秒前
满满发布了新的文献求助10
18秒前
VV2001发布了新的文献求助10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706