碳纤维
温室气体
环境科学
还原(数学)
土地利用
固碳
环境工程
计算机科学
工程类
二氧化碳
土木工程
数学
算法
生态学
生物
复合数
几何学
作者
Haizhi Luo,Yingyue Li,Xinyu Gao,Xiangzhao Meng,Xiaohu Yang,Jinyue Yan
出处
期刊:Applied Energy
[Elsevier]
日期:2023-07-25
卷期号:348: 121488-121488
被引量:35
标识
DOI:10.1016/j.apenergy.2023.121488
摘要
Climate change has become a global concern, and the prediction of carbon emissions is key to achieving carbon-reduction goals. The existing framework cannot accurately reflect the spatial distribution of carbon emissions, making it difficult to guide urban planning and management. Therefore, in this study, a carbon emission spatial simulation and prediction model was established. The model includes the GIS-Kernel Density sub-model for subdividing built-up area, the Land Use-Carbon Emission sub-model for establishing the correlation between land use and carbon emissions, the Multi Objective Programming-Principal Component Analysis-BP neural network sub-model for presetting development scenarios, and the Patch-generating Land-use Simulation sub-model for predicting. Xi'an was chosen as the study site, and two extreme scenarios were determined. A total of 373,318 development paths were segmented from the interval, and the optimal path was selected. All scenarios were simulated, and the carbon emissions and their spatial distribution were calculated. The results showed that the overall accuracy of the simulation exceeded 90%. Under the optimal path, Xi'an's carbon emissions reach 60.6 million tons at peak time, which will be reduced to 47.38 million tons by 2060. In addition, the model analyzed the temporal and spatial changes of carbon sources and sinks and drew up the path of carbon reduction by technology and urban planning. This model can provide a reference for regional carbon-reduction planning and carbon reduction technology implantation. It can propose strategies from the perspective of planning and management.
科研通智能强力驱动
Strongly Powered by AbleSci AI