HDGT: Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory Prediction via Scene Encoding

计算机科学 图形 变压器 人工智能 空间关系 编码(内存) 理论计算机科学 计算机视觉 量子力学 物理 电压
作者
Xiaosong Jia,Penghao Wu,Li Chen,Yu Liu,Hongyang Li,Junchi Yan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13860-13875 被引量:72
标识
DOI:10.1109/tpami.2023.3298301
摘要

Encoding a driving scene into vector representations has been an essential task for autonomous driving that can benefit downstream tasks e.g., trajectory prediction. The driving scene often involves heterogeneous elements such as the different types of objects (agents, lanes, traffic signs) and the semantic relations between objects are rich and diverse. Meanwhile, there also exist relativity across elements, which means that the spatial relation is a relative concept and need be encoded in a ego-centric manner instead of in a global coordinate system. Based on these observations, we propose Heterogeneous Driving Graph Transformer (HDGT), a backbone modelling the driving scene as a heterogeneous graph with different types of nodes and edges. For heterogeneous graph construction, we connect different types of nodes according to diverse semantic relations. For spatial relation encoding, the coordinates of the node as well as its in-edges are in the local node-centric coordinate system. For the aggregation module in the graph neural network (GNN), we adopt the transformer structure in a hierarchical way to fit the heterogeneous nature of inputs. Experimental results show that HDGT achieves state-of-the-art performance for the task of trajectory prediction, on INTERACTION Prediction Challenge and Waymo Open Motion Challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小核桃完成签到,获得积分20
刚刚
刚刚
浮游应助怡然的雪柳采纳,获得10
刚刚
1秒前
寒冷依秋发布了新的文献求助10
1秒前
我比脚酷完成签到,获得积分10
2秒前
aa发布了新的文献求助10
2秒前
球宝完成签到,获得积分10
2秒前
浮游应助王誉霖采纳,获得10
2秒前
拾柒完成签到,获得积分10
3秒前
小一完成签到 ,获得积分10
3秒前
boltos完成签到,获得积分10
3秒前
3秒前
zjkzh完成签到,获得积分10
3秒前
高挑的向真完成签到,获得积分10
3秒前
Dawei_YZU完成签到,获得积分10
3秒前
3秒前
4秒前
研友_Lpapjn完成签到,获得积分10
4秒前
完美世界应助zx采纳,获得10
7秒前
7秒前
7秒前
友好的易槐完成签到,获得积分10
7秒前
8秒前
ben完成签到,获得积分10
8秒前
XYN1发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
bonnie应助LLY采纳,获得50
10秒前
10秒前
kjaiod完成签到,获得积分10
10秒前
林伯格完成签到,获得积分10
11秒前
科研通AI6应助wangyiren采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
顾矜应助无心的夏烟采纳,获得10
13秒前
cy__发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921